CNC MELD/S AC SERVO/SPINDLE MDS-C1 Series

SPECIFICATIONS MANUAL

Introduction

Thank you for selecting the Mitsubishi numerical control unit.
This instruction manual describes the handling and caution points for using this AC servo/spindle.
Incorrect handling may lead to unforeseen accidents, so always read this instruction manual thoroughly to ensure correct usage.
Make sure that this instruction manual is delivered to the end user.
Always store this manual in a safe place.
All specifications for the MDS-C1 Series are described in this manual. However, each CNC may not be provided with all specifications, so refer to the specifications for the CNC on hand before starting use.

Notes on Reading This Manual

(1) Since the description of this specification manual deals with NC in general, for the specifications of individual machine tools, refer to the manuals issued by the respective machine manufacturers. The "restrictions" and "available functions" described in the manuals issued by the machine manufacturers have precedence to those in this manual.
(2) This manual describes as many special operations as possible, but it should be kept in mind that items not mentioned in this manual cannot be performed.

Precautions for safety	
Please read this manual and auxiliary documents before starting installation, operation, maintenance or inspection to ensure correct usage. Thoroughly understand the device, safety information and precautions before starting operation.	
The safety precautions in this instruction manual are ranked as "WARNING" and "CAUTION".	
\ DANGER	When there is a potential risk of fatal or serious injuries if handling is mistaken.
¢ WARNING	When fatal or serious injuries may occur if handling is mistaken.
\} ¢ CAUTION	When a dangerous situation may occur if handling is mistaken leading to medium or minor injuries, or physical damage.
Note that some items described as \. CAUTION\square may lead to major results depending on the situation. In any case, important information that must be observed is described.	

The numeric control unit is configured of the control unit, operation board, servo drive unit, spindle drive unit, power supply + servo drive or spindle drive, servomotor, and spindle motor, etc.

In this manual, the following items are generically called the "servomotor".

- Servomotor
- Spindle motor

In this manual, the following items are generically called the "servo drive unit".

- Servo drive unit
- Spindle drive unit
- Power supply + servo drive or spindle drive

1
 DANGER

There are no "DANGER" items in this manual.

〔. WARNING

1. Electric shock prevention

Do not open the front cover while the power is ON or during operation. Failure to observe this could lead to electric shocks.

Do not operate the unit with the front cover removed. The high voltage terminals and charged sections will be exposed, and can cause electric shocks.

Do not remove the front cover even when the power is OFF unless carrying out wiring work or periodic inspections. The inside of the servo drive unit is charged, and can cause electric shocks.

Wait at least 15 minutes after turning the power OFF before starting wiring, maintenance, or inspections. Failure to observe this could lead to electric shocks.

Ground the servo drive unit and servomotor with Class C (former class 3) grounding or higher.

Wiring, maintenance, and inspection work must be done by a qualified technician.

Wire the servo drive unit and servomotor after installation. Failure to observe this could lead to electric shocks.

Do not touch the switches with wet hands. Failure to observe this could lead to electric shocks.

Do not damage, apply forcible stress, place heavy items on the cables or get them caught. Failure to observe this could lead to electric shocks.

\triangle

CAUTION

1. Fire prevention

Install the servo drive unit, servomotor and regenerative resistor on noncombustible material. Direct installation on combustible material or near combustible materials could lead to fires.

Shut off the power on the servo drive unit side if a fault occurs in the servo drive unit. Fires could be caused if a large current continues to flow.

Provide a sequence that shut off the power at the regenerative resister error signal-ON when using the regenerative resistor. The regenerative resistor could abnormally overheat and cause a fire due to a fault in the regenerative transistor, etc.

CAUTION

2. Injury prevention

Do not apply a voltage other than that specified in Instruction Manual on each terminal. Failure to observe this item could lead to ruptures or damage, etc.

Do not mistake the terminal connections. Failure to observe this item could lead to ruptures or damage, etc.

Do not mistake the polarity (\oplus, Θ). Failure to observe this item could lead to ruptures or damage, etc.

Do not touch the fin on the servo drive unit, regenerative resister or servomotor, etc., while the power is turned ON or immediately after turning the power OFF. These parts may reach high temperatures, and can cause burns.

3. Various precautions

Observe the following precautions. Incorrect handling of the unit could lead to faults, injuries and electric shocks, etc.
(1) Transportation and installation

Correctly transport the product according to its weight.
Use the servomotor's hanging bolts only when transporting the servomotor. Do not transport the servomotor when it is installed on the machine.
4
Do not stack the products above the tolerable number.
Do not hold the cables, axis or detector when transporting the servomotor.

Do not hold the connected wires or cables when transporting the servo drive unit.
Do not hold the front cover when transporting the servo drive unit. The unit could drop.
Follow this Instruction Manual and install the unit in a place where the weight can be borne.
Do not get on top of or place heavy objects on the unit.
Always observe the installation directions.
Secure the specified distance between the servo drive unit and control panel, or between the servo drive unit and other devices.

Do not install or run a servo drive unit or servomotor that is damaged or missing parts.
Do not block the intake or exhaust ports of the servomotor provided with a cooling fan.
Do not let foreign objects enter the servo drive unit or servomotor. In particular, if conductive objects such as screws or metal chips, etc., or combustible materials such as oil enter, rupture or breakage could occur.

The servo drive unit and servomotor are precision devices, so do not drop them or apply strong impacts to them.

A CAUTION		
¢ Store and use the units under the following environment conditions.		
Environment	Conditions	
	Servo drive unit	Servomotor
Ambient temperature	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C} \\ \text { (with no freezing) } \end{gathered}$	$\begin{gathered} 0^{\circ} \mathrm{C} \text { to }+40^{\circ} \mathrm{C} \\ \text { (with no freezing) } \end{gathered}$
Ambient humidity	To follow separate specifications	80% RH or less (with no dew condensation)
Storage temperature	To follow separate specifications	$-15^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage humidity	To follow separate specifications	90% RH or less (with no dew condensation)
Atmosphere	Indoors (Where unit is not subject to direct sunlight) With no corrosive gas, combustible gas, oil mist or dust	
Altitude	1000 m or less above sea level	
Vibration	To follow separate specifications	

Securely fix the servomotor to the machine. Insufficient fixing could lead to the servomotor slipping off during operation.

Always install the servomotor with reduction gear in the designated direction. Failure to do so could lead to oil leaks.

Never touch the rotary sections of the servomotor during operations. Install a cover, etc., on the shaft.

When installing a coupling to a servomotor shaft end, do not apply an impact by hammering, etc. The detector could be damaged.

Do not apply a load exceeding the tolerable load onto the servomotor shaft. The shaft could break.

When storing for a long time, please contact the Service Center or Service Station.

CAUTION

(2) Wiring

Correctly and securely perform the wiring. Failure to do so could lead to runaway of the servomotor.

Do not install a condensing capacitor, surge absorber or radio noise filter on the output side of the servo drive unit.

Correctly connect the output side (terminals U, V, W). Failure to do so could lead to abnormal operation of the servomotor.

Do not directly connect a commercial power supply to the servomotor. Doing so could lead to faults.

When using an inductive load such as a relay, always connect a diode as a noise measure parallel to the load.

When using a capacitance load such as a lamp, always connect a protective resistor as a noise measure serial to the load.
Do not reverse the direction of a diode which connect to a DC relay for the control output signals to suppress a surge.
Connecting it backwards could cause the drive unit to malfunction so that signals are not output, and emergency stop and other safety circuits are inoperable.

Do not connect/disconnect the cables connected between the units while the power is ON.
Securely tighten the cable connector fixing screw or fixing mechanism. An insecure fixing could cause the cable to fall off while the power is ON.

When using a shielded cable instructed in the connection manual, always ground the cable with a cable clamp, etc.

Always separate the signals wires from the power supply line and power line.
Use wires and cables that have a wire diameter, heat resistance and flexibility that conforms to the system.

(3) Trial operation and adjustment

Check and adjust each program and parameter before starting operation. Failure to do so could lead to unforeseen operation of the machine.

Do not make remarkable adjustments and changes as the operation could become unstable.

CAUTION

(4) Usage methods

Install an external emergency stop circuit so that the operation can be stopped and power shut off immediately.

Turn the power OFF immediately if smoke, abnormal noise or odors are generated from the servomotor or servo drive unit.

Unqualified persons must not disassemble or repair the unit.
Never make modifications.
Reduce magnetic damage by installing a noise filter, etc. The electronic devices used near the servo drive unit could be affected by magnetic noise.
Use the servomotor, servo drive unit and regenerative resistor with the designated combination.
Failure to do so could lead to fires or trouble.
The brake (magnetic brake) assembled into the servomotor are for holding, and must not be used for normal braking.

There may be cases when holding is not possible due to the magnetic brake's life or the machine construction (when ball screw and servomotor are coupled via a timing belt, etc.). Install a stop device to ensure safety on the machine side.

After changing the programs/parameters or after maintenance and inspection, always test the operation before starting actual operation.
Do not enter the movable range of the machine during automatic operation. Never place body parts near or touch the spindle during rotation.

Follow the power supply specification conditions given in the separate specifications manual for the power (input voltage, input frequency, tolerable sudden power failure time, etc.).

In the following explanations on bits, set all bits not used, including blank bits, to " 0 ".
When the breaker is shared for multiple power supply units, if a short-circuit fault occurs in the unit with the smallest capacity, the breaker may not function. This is dangerous, so do not share the breaker.
Please do not use a dynamic brake as a usual slowdown stop. When continuation operation is carried out, the brake resistance for dynamic may be damaged.

(5) Troubleshooting

If a hazardous situation is predicted during power failure or product trouble, use a servomotor with magnetic brakes or install an external brake mechanism.

Use a double circuit configuration that allows the operation circuit for the magnetic brakes to be operated even by the external emergency stop signal.

Always turn the input power OFF when an alarm occurs.
Never go near the machine after restoring the power after a power failure, as the machine could start suddenly. (Design the machine so that personal safety can be ensured even if the machine starts suddenly.)

CAUTION

(6) Maintenance, inspection and part replacement

Always backup the servo drive unit programs and parameters before starting maintenance or inspections.

The capacity of the electrolytic capacitor will drop due to deterioration. To prevent secondary damage due to failures, replacing this part every five years when used under a normal environment is recommended. Contact the Service Center or Service Station for replacement.

Do not perform a megger test (insulation resistance measurement) during inspections.
If the battery low warning is issued, back up the machining programs, tool data and parameters with an input/output unit, and then replace the battery.

Do not short circuit, charge, overheat, incinerate or disassemble the battery.
(7) Disposal

Treat this unit as general industrial waste.
If the heat radiating fins are protruding on the back face of the MDS Series, substitute Freon is used. Do not dispose of this type of unit as general industrial waste. Always contact the Service Station or Service Center for disposal.

Do not disassemble the servomotor or servo drive unit.
Dispose of the battery according to local laws.

(8) General precautions

The drawings given in this Specifications and Maintenance Instruction Manual show the covers and safety partitions, etc., removed to provide a clearer explanation. Always return the covers or partitions to their respective places before starting operation, and always follow the instructions given in this manual.

Compliance to European EC Directives

1. European EC Directives

In the EU Community, the attachment of a CE mark (CE marking) is mandatory to indicate that the basic safety conditions of the Machine Directives (issued Jan. 1995), EMC Directives (issued Jan. 1996) and the Low-voltage Directives (issued Jan. 1997) are satisfied. The machines and devices in which the servo and spindle drive are assembled are the targets for CE marking.

(1) Compliance to EMC Directives

The servo and spindle drive are components designed to be used in combination with a machine or device. These are not directly targeted by the Directives, but a CE mark must be attached to machines and devices in which these components are assembled. "Appendix 2", which explains the unit installation and control panel manufacturing method, etc., has been prepared to make compliance to the EMC Directives easier.

(2) Compliance to Low-voltage Directives

The MDS-C1 Series units are targeted for the Low-voltage Directives. An excerpt of the precautions given in this specification is given below. Please read this section thoroughly before starting use.
A Self-Declaration Document has been prepared for the EMC Directives and Low-voltage Directives. Contact Mitsubishi or your dealer when required.

2. Cautions for EC Directive compliance

Use the Low-voltage Directive compatible parts for the servo/spindle drive and servo/spindle motor. In addition to the items described in this instruction manual, observe the items described below.

(1) Configuration

(2) Environment

Use the units within an Overvoltage Protection Category III and Pollution Class of 2 or less environment as stipulated in IEC60664.
(a) To attain the Overvoltage Category II, insert an EN or IEC Standard compliant star-connection insulated transformer in the power supply unit input.
(b) To attain a Pollution Class of 2, install the servo/spindle drive unit in a control panel having a structure (IP54 or higher) in which water, oil, carbon or dust cannot enter.

Drive unit

	During operation	Storage	During transportation
Ambient temperature	$0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Humidity	$90 \% \mathrm{RH}$ or less	$90 \% \mathrm{RH}$ or less	$90 \% \mathrm{RH}$ or less
Altitude	1000 m or less	1000 m or less	10000 m or less

Motor

	During operation	Storage	During transportation
Ambient temperature	$0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	$-15^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Humidity	$80 \% \mathrm{RH}$ or less	$90 \% \mathrm{RH}$ or less	$90 \% \mathrm{RH}$ or less
Altitude	1000 m or less	1000 m or less	10000 m or less

(3) Power supply
(a) Use the servo/spindle drive unit under the Overvoltage Category III conditions stipulated in IEC60664
(b) Do not omit the circuit breaker and electromagnetic contactor.
(4) Installation
(a) To prevent electric shocks, always connect the servo/spindle drive unit protective earth (PE) terminal (terminal with Θ mark) to the protective earth (PE) on the control panel. (Always ground even when using an earth leakage breaker.)
(b) When connecting the earthing wire to the protective earth (PE) terminal, do not tighten the wire terminals together. Always connect one wire to one terminal.

(5) Wiring
(a) Always use crimp terminals with insulation tubes so that the wires connected to the drive unit terminal block do not contact the neighboring terminals.
(b) Use a tin-plated crimp terminal that does not contain zinc for connecting the earthing wire. When tightening the screw, take care not to crush the screw threads.

(c) Refer to EN60204-1 when selecting the wire size. (Refer to section "8.5 Selection of wire size" for details.)

- Ambient temperature: $40^{\circ} \mathrm{C}$ max.
- Wire sheath: Cable installed on walls without ducts or conduits
- The control panel and duct wiring must be 3m or less.

If the conditions differ, refer to Table 5 in EN60204-1 Appendix C.
(6) Peripheral devices and options
(a) Use EN/IEC Standards compliant parts for the circuit breaker and electromagnetic contactor.

(7) Miscellaneous

(a) Refer to "Appendix 2 EMC INSTALLATION GUIDELINES" for methods on complying with the EMC Directives.
(b) When using in Europe, earth the device according to each country's requirements.
(c) The control circuit connector (O) is safety separated from the main circuit (O).

Instruction Manual for Compliance with UL/c-UL Standard

The instruction of UL/c-UL listed products is described in this manual.
The descriptions of this manual are conditions to meet the UL/c-UL standard for the UL/c-UL listed products. To obtain the best performance, be sure to read this manual carefully before use.
To ensure proper use, be sure to read specification manual, connection manual and maintenance manual carefully for each product before use.

1. UL/c-UL listed products

[CNC system]

Unit name	Unit part number
NC control unit	FCU6-MU [*1][[*2], FCU6-MA [*1][$\left.{ }^{*} 2\right]$
Display unit	FCU6-DU [*39][*40], FCU6-YZ [*39][*40], FCUA-LD [**41], FCUACT [${ }^{*} 41$], FCUA-CR [*41],
Keyboard unit	FCU6-YZ [*39][*40], FCU6-TZ [*39][*40], FCU6-KB0 [*42], FCUA-KB [*42]
Base I/O unit	FCU6-DX [*3], HR377, HR378, HR353
Remote I/O unit	FCUA-DX [*4]
I/O module	HR357, HR371, QY231

[AC servo/spindle system]

Unit name	Unit part number
Power supply unit	MDS-B-CVE- [*5], MDS-C1-CV-[*5]
Servo drive unit	MDS-B-V1- [*6], MDS-B-V14- [*6], MDS-C1-V1- [*6], MDS-B-V2- [*7], MDS-B-V24- [*7], MDS-C1-V2- [*7], MDS-B-SVJ2- [*8]
Spindle drive unit	MDS-B-SP [*38]-[*9], MDS-C1-SP [*38]-[*9]
Option unit	MDS-B-PJEX
Battery unit	FCU6-BT4D1
Servo motor	
Spindle Motor	$\begin{array}{\|l\|} \hline \text { SJ [*25][*26][*27][**28][*29][*30][*31][.*32] } \\ \text { SJ [*33][*26][*28][*34][*35][*36][*37][*31] } \end{array}$

Suffixes listed below may be attached to the above part numbers at portions marked with [*]. For details regarding specifications, see the specification manuals.
[*1] 011, 013, 021, 031, 032, 515, 516, 517, 535, 536
[*2] 12, 23
[*3] $210,211,220,221,310,311,320,321,330,331,340,341,350,351,410,411,420,421,430,431,440$, 441, 450, 451
[*4] 100, 101, 110, 111, 120, 121, 130, 131, 140, 141
[*5] $37,55,75,110,150,185,220,260,300,370,(450,550$: Only B)
[*6] 01, 03, 05, 10, 20, 35, 45S, 45, 70, 90, 110, 150
[*7] 0101, 0301, 0303, 0501, 0503, 0505, 1003, 1005, 1010, 2010, 2020, 3510S, 3510, 3520S, 3520, 3535, 4520, 4535, 4545, 7035, 7045, 7070S, 7070
[*8] 01, 03, 04, 06, 07, 10, 20
[*9] 04, $075,15,22,37,55,75,110,150,185,220,260,300,370,(450,550: O n l y$ MDS-B Series $)$
[*10] 05, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 30, 35
[*11] 1, 2, 3 [*12] None, C
[*15] None, Gn, GnH ($\mathrm{n}=$ serial number)
[*14] None, B
[*16] None, K, D, X, T
[*17] None, Gn, GnH ($\mathrm{n}=$ serial number)
[*17] None, Wn ($\mathrm{n}=$ serial number) [*18] None, UL, UE
[*20] 5, 10, 15, 20, 35, 45, 70
[*23] E, A
[*19] None, Sn ($\mathrm{n}=$ serial number)
[*26] None, K
[*21] None, R
[*24] 1, 2, 33, 42, 51
[*27] None, S
[*29] 01-99 [*30] None, F, G, Y, Z
[*25] NL, PF, PL, V, VL
[*28] Two digits decimal two digits
[*32] None, S01-S99
[*31] None, M
[*35] None, 1-9, A-F
[*36] None, D, H, P, Z
[*34] A, B, L, M, N, X
[*37] None, B, C, F, G, R
[*40] 31, 32, 33, 34, 35, 36
[*38] None, H, M, X, HX, MX
[*39] T, C, N
[*41] 10, 100, 120

2. Operation surrounding air ambient temperature

The recognized operation ambient temperature of each units are as shown in the table below. The recognized operation ambient temperatures are the same as an original product specification for all of the units.

Classification	Unit name	Operation ambient temperature
CNC system	NC control unit	$0 \sim 55^{\circ} \mathrm{C}$
	Base I/O unit	$0 \sim 55^{\circ} \mathrm{C}$
	Remote I/O unit	$0 \sim 55^{\circ} \mathrm{C}$
	l/O module	$0 \sim 55^{\circ} \mathrm{C}$
AC servo/spindle system	Power supply unit	$0 \sim 55^{\circ} \mathrm{C}$
	Servo drive unit	$0 \sim 55^{\circ} \mathrm{C}$
	Spindle drive unit	$0 \sim 55^{\circ} \mathrm{C}$
	Option unit, Battery unit	$0 \sim 55^{\circ} \mathrm{C}$
	Servo motor, Spindle Motor	$0 \sim 40^{\circ} \mathrm{C}$

3. Notes for CNC system

3.1 Selection of external power supply unit

An UL recognized 24 Vdc output power supply unit should be used to CNC system.
The "PD25" power supply unit provided by Mitsubishi will be changed to UL recognized product since September 2000.

4. Notes for AC servo/spindle system

4.1 General Precaution

It takes 10 minutes to discharge the bus capacitor.
When starting wiring or inspection, shut the power off and wait for more than 15 minutes to avoid a hazard of electrical shock.

4.2 Installation

MDS-B/C1 Series have been approved as the products, which have been installed in the electrical enclosure. The minimum enclosure size is based on 150 percent of each MDS-B/C1 unit combination. And also, design the enclosure so that the ambient temperature in the enclosure is $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$ or less, refer to the manual book (chapter I -section3,7).

4.3 Short-circuit ratings

Suitable for use in a circuit capable of delivering, it is not more than 5 kA rms symmetrical amperes.

4.4 Peripheral devices

To comply with UL/c-UL Standard, use the peripheral devices, which conform to the corresponding standard.

- Circuit Breaker, Fuses, Magnetic Contactor and AC Reactor

Applicable power supply unit	Circuit Breaker	Fuse Class K5	Magnetic contactor (AC3)	AC Reactor BKO-NC6851-
MDS-B-CVE-37 MDS-C1-CV-37	NF50 40A	70A	S-N25	H11 (B-AL-7.5K)
MDS-B-CVE-55 MDS-C1-CV-55	NF50 40A	100A	S-N25	H11 (B-AL-7.5K)
MDS-B-CVE-75 MDS-C1-CV-75	NF50 40A	100A	H-N25 (B-AL-7.5K)	
MDS-B-CVE-110 MDS-C1-CV-110	NF50 50A	S-N35	H12 (B-AL-11K)	
MDS-B-CVE-150 MDS-C1-CV-150	NF100 100A	200A	S-N50	H13 (B-AL-18.5K)
MDS-B-CVE-185 MDS-C1-CV-185	NF100 100A	S-N50	H13 (B-AL-18.5K)	
MDS-B-CVE-220 MDS-C1-CV-220	NF225 150A	S-N80	H14 (B-AL-30K)	
MDS-B-CVE-260 MDS-C1-CV-260	NF225 150A	S-N80	H14 (B-AL-30K)	
MDS-B-CVE-300 MDS-C1-CV-300	NF225 150A	S-N80	H14 (B-AL-30K)	
MDS-B-CVE-370 MDS-C1-CV-370	NF225 175A	S-N150	H15 (B-AL-37K)	
MDS-B-CVE-450	NF225 200A	SF400 300A	S-N150	H16 (B-AL-45K)
MDS-B-CVE-550	S-N180	H17 (B-AL-55K)		

- Circuit Breaker for of spindle motor Fan

Select the Circuit Breaker by doubling the spindle motor fan rated.
A rush current that is approximately double the rated current will flow, when the fan is started
<Notice>

- For installation in United States, branch circuit protection must be provided, in accordance with the National Electrical Code and any applicable local codes.
- For installation in Canada, branch circuit protection must be provided, in accordance with the Canadian Electrical Code and any applicable provincial codes.

4.5 Flange of servomotor

Mount the servomotor on a flange, which has the following size or produces an equivalent or higher heat dissipation effect:

Flange size (mm)	Servo Motor				
	HCD	HC-RFD	HC-MFD	HA-FFD	HC-SFロ
$150 \times 150 \times 6$	---	---	Under 100 W	Under 100 W	---
$250 \times 250 \times 6$	---	---	200 W	$200,300 \mathrm{~W}$	---
$250 \times 250 \times 12$	$0.5 \sim 1.5 \mathrm{~kW}$	$1.0 \sim 2.0 \mathrm{~kW}$	400 W	$400,600 \mathrm{~W}$	$0.5 \sim 1.5 \mathrm{~kW}$
$300 \times 300 \times 12$	---	---	750 W	---	---
$300 \times 300 \times 20$	$2.0 \sim 7.0 \mathrm{~kW}$	---	---	---	$2.0 \sim 7.0 \mathrm{~kW}$

4.6 Motor Over Load Protection

Servo drive unit MDS-B-V1/2/14/24 Series and MDS -C1-V1/2 series and spindle drive unit MDS-B-SP and MDS-C1-SP series have each solid-state motor over load protection.
When adjusting the level of motor over load, set the parameter as follows.

4.6.1 MDS-B-V1/2/14/24, MDS-C1-V1/2 Series

Parameter No.	Parameter Abbr.	Parameter Name	Setting Procedure	Standard Setting Value	Setting Range
SV021	OLT	Overload Time constant	Set the time constant for overload detection. (Unit: 1 second.)	60 s	$1 \sim 300 \mathrm{~s}$
SV022	OLL	Overload Detection level	Set the overload current detection level with a percentage (\%) of the stall rating.	150%	$1 \sim 500 \%$

4.6.2 MDS-B-SP, MDS-C1-SP Series

Parameter No.	Parameter Abbr.	Parameter Name	Setting Procedure	Standard Setting Value	Setting Range
SP063	OLT	Overload Time constant	Set the time constant for overload detection. (Unit: 1 second.)	60 s	$0 \sim 1000 \mathrm{~s}$
SP064	OLL	Overload Detection level	Set the overload current detection level with a percentage (\%) of the rating.	110%	$1 \sim 200 \%$

4.7 Field Wiring Reference Table for Input and Output

Use the UL-approved Round Crimping Terminals to wire the input and output terminals of MDS-B Series.
Crimp the terminals with the crimping tool recommended by the terminal manufacturer.
Following described crimping terminals and tools type are examples of Japan Solderless Terminal Mfg. Co., Ltd.
4.7.1 Power Supply Unit (MDS-B-CVE, MDS-C1-CV Series)

Capacity [kW]		3.7~7.5	11.0~18.5	22.0~37.0	45.0	55.0
Terminal Screw Size	$\begin{gathered} \mathrm{P}, \mathrm{~N} \\ (\mathrm{~L}+\mathrm{L}-) \end{gathered}$	M6	M6	M6	M6, M10	
	Screw Torque [$\mathrm{lb} \mathrm{in} / \mathrm{N} \mathrm{m}$]	44.3/5.0	49.6/5.6	49.6/5.6	49.6/5.6, 177/20	
	$\begin{gathered} \text { L11, L21, MC1 } \\ (R 0, S 0) \end{gathered}$	M4	M4	M4	M4	M4
	Screw Torque [lb in/ N m]	17.4/2.0	14.2/1.6	14.2/1.6	14.2/1.6	14.6/1.6
	L1, L2, L3	M4	M5	M8	M8	M10
	Screw Torque [lb in/N m]	14.6/1.6	29.8/3.37	117.2/13.2	117.2/13.2	177/20

P, N(L+, L-)

Capacity [kW]	3.7, 5.5	7.5	11.0	15.0	18.5, 22.0
Wire Size (AWG) /Temp Rating Note 1	\#10/60 ${ }^{\circ} \mathrm{C}$	\#8/60 ${ }^{\circ} \mathrm{C}$	\#4/60 ${ }^{\circ} \mathrm{C}$	\#4/60 ${ }^{\circ} \mathrm{C}$	\#3/60 ${ }^{\circ} \mathrm{C}$
	\#12/75 ${ }^{\circ} \mathrm{C}$	\#10/75 ${ }^{\circ} \mathrm{C}$	\#8/75 ${ }^{\circ} \mathrm{C}$	\#4/75 ${ }^{\circ} \mathrm{C}$	\#4/75 ${ }^{\circ} \mathrm{C}$
Crimping Terminals Type	R5.5-6	R8-6	R22-6	R22-6	
		R5.5-6	R8-6		
Crimping Tools Type	YHT-2210	YHT-8S	YPT-60	YPT-60	
		YHT-2210	YHT-8S		
Capacity [kW]	26.0	30.0	37.0	45.0	55.0
Wire Size (AWG) /Temp Rating Note 1	\#1/60 ${ }^{\circ} \mathrm{C}$	\#1/75 ${ }^{\circ} \mathrm{C}$	\#1/0/75 ${ }^{\circ} \mathrm{C}$	The bus bar is attached to the product.	
	\#3/75 ${ }^{\circ} \mathrm{C}$				
Crimping Terminals Type	38-S6	38-S6	$\begin{aligned} & \text { L330T } \\ & 459-12 \end{aligned}$		
	R22-6				
Crimping Tools Type	YPT-60		$\begin{gathered} \text { YET300 } \\ \text { YF-1 } \end{gathered}$,	

L11, L21 (R0, S0), MC1

Capacity $[\mathrm{kW}]$	$3.7 \sim 55.0$
Wire Size (AWG)	$\# 14 / 60^{\circ} \mathrm{C}$
$/$ Temp Rating Note 1 $_{c}^{c}$ Crimping Terminals Type	$\# 14 / 75^{\circ} \mathrm{C}$
Crimping Tools Type	V2-4

L1, L2, L3

Capacity [kW]	3.7	5.5	7.5	11.0	15.0	18.5	
Wire Size (AWG) /Temp Rating Note 1	\#10/60 ${ }^{\circ} \mathrm{C}$	\#10/60 ${ }^{\circ} \mathrm{C}$	\#10/75 ${ }^{\circ} \mathrm{C}$	\#4/60 ${ }^{\circ} \mathrm{C}$	\#3/60 ${ }^{\circ} \mathrm{C}$	\#3/75 ${ }^{\circ} \mathrm{C}$	
	\#12/75 ${ }^{\circ} \mathrm{C}$	\#10/75 ${ }^{\circ} \mathrm{C}$		\#4/75 ${ }^{\circ} \mathrm{C}$	\#4/75 ${ }^{\circ} \mathrm{C}$		
Crimping Terminals Type	5.5-S4			L300T 459-23			
Crimping Tools Type	YHT-2210			YPT-60			
Earth Wire Size (AWG)	\#10/60 ${ }^{\circ} \mathrm{C}$	\#10/60 ${ }^{\circ} \mathrm{C}$	\#10/75 ${ }^{\circ} \mathrm{C}$	\#4/60 ${ }^{\circ} \mathrm{C}$	\#3/60 ${ }^{\circ} \mathrm{C}$	\#3/75 ${ }^{\circ} \mathrm{C}$	
	\#10/75 ${ }^{\circ} \mathrm{C}$	\#10/75 ${ }^{\circ} \mathrm{C}$		\#4/75 ${ }^{\circ} \mathrm{C}$	\#4/75 ${ }^{\circ} \mathrm{C}$		
Capacity [kW]	22.0	26.0	30.0	37.0	45.0	55.0	
Wire Size (AWG) /Temp Rating Note 1	\#1/60 ${ }^{\circ} \mathrm{C}$	\#1/0/60 ${ }^{\circ} \mathrm{C}$	\#1/75 ${ }^{\circ} \mathrm{C}$	1/0/75 ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \hline \# 2 / 0 \\ 175^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \# 3 / 0 \\ 175^{\circ} \mathrm{C} \end{gathered}$	
	\#2/75 ${ }^{\circ} \mathrm{C}$	\#1/75 ${ }^{\circ} \mathrm{C}$					
Crimping Terminals Type	38-S8	$\begin{aligned} & \hline \text { L330T } \\ & 459-12 \end{aligned}$	38-S8	$\begin{aligned} & \text { L330T } \\ & 459-12 \end{aligned}$	70-8	R80-10	
		38-S8					
Crimping Tools Type	YPT-60	$\begin{gathered} \text { YET300 } \\ \text { YF-1 } \end{gathered}$	YPT-60	$\begin{gathered} \text { YET300 } \\ \text { YF-1 } \end{gathered}$	YTP-150		
		YPT-60					
Earth Wire Size (AWG)	\#3/60${ }^{\circ} \mathrm{C}$	\#1/600	\#3/75 ${ }^{\circ} \mathrm{C}$	$1 / 75^{\circ} \mathrm{C}$	\#1/75 ${ }^{\circ} \mathrm{C}$	\#1/0/75 ${ }^{\circ} \mathrm{C}$	
	\#3/75 ${ }^{\circ} \mathrm{C}$	\#3/75 ${ }^{\circ} \mathrm{C}$					

4.7.2 Servo Drive Unit (MDS-B-V1/2/14/24, MDS-C1-V1/2 Series)

	Axis	1-axis (V1, V14)			2-axes (V2, V24)
Capacity [kW]		$0.1 \sim 3.5$	4.5~9.0	$\begin{aligned} & \text { 11.0, } \\ & 15.0 \end{aligned}$	0.1+0.1~7.0+7.0
Terminal Screw Size	$\begin{gathered} \mathrm{P}, \mathrm{~N} \\ (\mathrm{~L}+\mathrm{L}, \mathrm{~L}) \end{gathered}$	M6	M6	M6	M6
	Screw Torque [$\mathrm{lb} \mathrm{in} / \mathrm{Nm}$]	$\begin{aligned} & 44.3 \\ & / 5.0 \end{aligned}$	$\begin{aligned} & 44.3 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 44.3 \\ & / 5.0 \end{aligned}$	$\begin{aligned} & 44.3 \\ & 15.0 \end{aligned}$
	$\begin{aligned} & \hline \mathrm{L} 11, \mathrm{~L} 21 \\ & \text { (R0, S0) } \end{aligned}$	M4	M4	M4	M4
	Screw Torque [$\mathrm{lb} \mathrm{in} / \mathrm{Nm}$]	$\begin{aligned} & 17.4 \\ & / 2.0 \end{aligned}$	$\begin{aligned} & 17.4 \\ & / 2.0 \end{aligned}$	$\begin{aligned} & 17.4 \\ & / 2.0 \end{aligned}$	$\begin{aligned} & 17.4 \\ & / 2.0 \end{aligned}$
	$\mathrm{U}, \mathrm{V}, \mathrm{W}$	M4	M5	M8	M4
	Screw Torque [$\mathrm{lb} \mathrm{in} / \mathrm{Nm}$]	$\begin{aligned} & 14.6 \\ & 11.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 28.6 \\ & / 3.2 \end{aligned}$	$\begin{aligned} & 117.2 \\ & 113.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.6 \\ & / 1.6 \end{aligned}$

P, N(L+, L-)
Wire size depends on the Power Supply Unit (MDS-B-CVE, MDS-C1-CV Series).

L11, L21 (R0, S0)

Capacity [kW]	$0.1 \sim 15.0$
Wire Size (AWG) /Temp Rating Note 1	$\# 14 / 60^{\circ} \mathrm{C}$
Crimping Terminals Type	$\# 14 / 75^{\circ} \mathrm{C}$
Crimping Tools Type	V2-4

U, V, W

Capacity [kW]	0.1~1.0	2.0	3.5	4.5
Wire Size (AWG) /Temp Rating Note 1	\#14/60 ${ }^{\circ} \mathrm{C}$	\#10/60 ${ }^{\circ} \mathrm{C}$	\#8/60 ${ }^{\circ} \mathrm{C}$	\#8/60 ${ }^{\circ} \mathrm{C}$
	\#14/75 ${ }^{\circ} \mathrm{C}$	\#14/75 ${ }^{\circ} \mathrm{C}$	\#10/75 ${ }^{\circ} \mathrm{C}$	\#10/75 ${ }^{\circ} \mathrm{C}$
Crimping Terminals Type	R2-4	R5.5-4	8-4	$\begin{array}{r} \text { R8-5 } \\ (8-4) \\ \hline . \end{array}$
		T2-4	R5.5-4	$\begin{aligned} & \mathrm{R} 5.5-5 \\ & \text { (R5.5-4) } \end{aligned}$
Crimping Tools Type	YHT-2210		YHT-8S	
Earth wire Size (AWG)	\#14/60 ${ }^{\circ} \mathrm{C}$	\#10/60 ${ }^{\circ} \mathrm{C}$	\#8/60 ${ }^{\circ} \mathrm{C}$	\#8/60 ${ }^{\circ} \mathrm{C}$
	\#14/75 ${ }^{\circ} \mathrm{C}$	$\# 12 / 75^{\circ} \mathrm{C}$	\#10/75 ${ }^{\circ} \mathrm{C}$	\#10/75 ${ }^{\circ} \mathrm{C}$
Capacity [kW]	7.0	9.0	11.0	15.0
Wire Size (AWG) /Temp Rating Note 1	\#8/60 ${ }^{\circ} \mathrm{C}$	\#8/60 ${ }^{\circ} \mathrm{C}$	\#4/60 ${ }^{\circ} \mathrm{C}$	\#2/60 ${ }^{\circ} \mathrm{C}$
	\#8/75 ${ }^{\circ} \mathrm{C}$	\#8/75 ${ }^{\circ} \mathrm{C}$	\#4/75 ${ }^{\circ} \mathrm{C}$	\#3/75 ${ }^{\circ} \mathrm{C}$
Crimping Terminals Type	$\begin{aligned} & \hline \text { R8-5 } \\ & (8-4) \end{aligned}$	R8-5	R22-8	R38-8
Crimping Tools Type	YHT-8S		YPT-60	
Earth Wire Size (AWG)	\#8/60 ${ }^{\circ} \mathrm{C}$	\#8/60 ${ }^{\circ} \mathrm{C}$	\#4/60 ${ }^{\circ} \mathrm{C}$	\#3/60 ${ }^{\circ} \mathrm{C}$
	\#8/75 ${ }^{\circ} \mathrm{C}$	$\# 8 / 75^{\circ} \mathrm{C}$	$\# 4 / 75^{\circ} \mathrm{C}$	$\# 3 / 75^{\circ} \mathrm{C}$

4.7.3 Spindle Drive Unit (MDS-B-SP, MDS-C1-SP Series)

Capacity [kW]		0.4~3.7	5.5~18.5	22.0~30.0	37.0	45.0/55.0
Terminal Screw Size	$\begin{gathered} \mathrm{P}, \mathrm{~N} \\ (\mathrm{~L}+\mathrm{L}, \mathrm{~L}) \end{gathered}$	M6	M6	M6	M10	M10
	Screw Torque [lb in/ N m]	44.3/5.0	44.3/5.0	44.3/5.0	234.3/26.5	177/20
	$\begin{aligned} & \hline \text { L11, L21 } \\ & \text { (R0, S0) } \end{aligned}$	M4	M4	M4	M4	M4
	$\begin{aligned} & \text { Screw Torque } \\ & {[\mathrm{lb} \mathrm{in} / \mathrm{N} \mathrm{~m}]} \end{aligned}$	17.4/2.0	17.4/2.0	17.4/2.0	17.4/2.0	17.2/2.0
	$\mathrm{U}, \mathrm{V}, \mathrm{W}$	M4	M5	M8	M8	M10
	Screw Torque [lb in/ N m]	14.6/1.6	28.6/3.2	117.2/13.2	88.5/10.0	177/20

P, N (L+, L-)
Wire size depends on the Power Supply Unit (MDS-B-CVE, MDS-C1-CV Series).
L11, L21 (R0, S0)

Capacity [kW]	$0.4 \sim 55.0$
Wire Size (AWG)	$\# 14 / 60^{\circ} \mathrm{C}$
/Temp Rating Note 1	$\# 14 / 75^{\circ} \mathrm{C}$
Crimping Terminals Type	V2-4
Crimping Tools Type	YNT-1614

U, V, W

Capacity [kW]	0.4, 0.75	1.5	2.2, 3.7	5.5	7.5	11.0	15.0	
Wire Size (AWG) /Temp Rating Note 1	\#14 $/ 60^{\circ} \mathrm{C}$	\# $10 / 60^{\circ} \mathrm{C}$		\#10/60 ${ }^{\circ} \mathrm{C}$	\#8/60 ${ }^{\circ} \mathrm{C}$	\#8/60 ${ }^{\circ} \mathrm{C}$	\#4/60 ${ }^{\circ} \mathrm{C}$	
	\#14/75 ${ }^{\circ} \mathrm{C}$	\#14/75 ${ }^{\circ} \mathrm{C}$		\#12/75 ${ }^{\circ} \mathrm{C}$	\#10/75 ${ }^{\circ} \mathrm{C}$	\#8/75 ${ }^{\circ} \mathrm{C}$	\#4/75 ${ }^{\circ} \mathrm{C}$	
Crimping Terminals Type	R2-4	5.5-S4	R5.5-4	R5.5-5	R8-5	R8-5	$\begin{aligned} & \hline \text { L330T } \\ & 459-23 \end{aligned}$	
		R2-4			R5.5-5			
Crimping Tools Type	YHT-2210				YHT-8S	YHT-8S	YPT-60	
					YHT-2210			
Earth Wire Size (AWG)	\#14/60 ${ }^{\circ} \mathrm{C}$	\#11/60 ${ }^{\circ} \mathrm{C}$		\#10/60 ${ }^{\circ} \mathrm{C}$	\#8/60 ${ }^{\circ} \mathrm{C}$	\#8/60 ${ }^{\circ} \mathrm{C}$	\# $/ 60^{\circ} \mathrm{C}$	
	\#14/75 ${ }^{\circ} \mathrm{C}$	\#14/75 ${ }^{\circ} \mathrm{C}$		\#10/75 ${ }^{\circ} \mathrm{C}$	\#10/75 ${ }^{\circ} \mathrm{C}$	\#8/75 ${ }^{\circ} \mathrm{C}$	\# $4 / 75^{\circ} \mathrm{C}$	
Capacity [kW]	18.5	22.0	26.0	30.0	37.0	45.0	55.0	
Wire Size (AWG) /Temp Rating Note 1	\#3/60 ${ }^{\circ} \mathrm{C}$	\#2/60 ${ }^{\circ} \mathrm{C}$	\#1/60 ${ }^{\circ} \mathrm{C}$	\#1/75 ${ }^{\circ} \mathrm{C}$	\#1/0/75 ${ }^{\circ} \mathrm{C}$	\#2/0	\#4/0	
	\#4/75 ${ }^{\circ} \mathrm{C}$	\#3/75 ${ }^{\circ} \mathrm{C}$	\#2/75 ${ }^{\circ} \mathrm{C}$			$75^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$	
Crimping Terminals Type	22-S6	R38-8			R60-8	70-10	R100-10	
	$\begin{aligned} & \text { L330T } \\ & 459-23 \end{aligned}$							
Crimping Tools Type	YPT-60				$\begin{gathered} \text { YET300 } \\ \text { YF-1 } \end{gathered}$	YPT-150		
Earth Wire Size (AWG)	\#3/60 ${ }^{\circ} \mathrm{C}$	\#3/60 ${ }^{\circ} \mathrm{C}$		\#3/75 ${ }^{\circ} \mathrm{C}$	\#1/75 ${ }^{\circ} \mathrm{C}$	\#1/75 ${ }^{\circ} \mathrm{C}$	\#3/0	
	\#4/75 ${ }^{\circ} \mathrm{C}$	\#3/75 ${ }^{\circ} \mathrm{C}$					$175^{\circ} \mathrm{C}$	

Note 1: $60^{\circ} \mathrm{C}$: Polyvinyl chloride insulated wires (IV)
$75^{\circ} \mathrm{C}$: Grade heat-resistant polyvinyl chloride insulated wires (HIV)
Use copper wire only.
Above listed wire are for use in the electric cabinet on machine or equipment.

4.8 Spindle Drive / Motor Combinations

Following combinations are the Standard combinations

Drive Unit Note: 1	Rating Output (kW) Of Applicable Spindle Motor	
	SJ- () Series SJ-V/VL Series Note: 2	SJ-N Series SJ-NL Series
MDS-B-SP []-04 MDS-C1-SP []-04		0.2
$\begin{gathered} \text { MDS-B-SP []-075 } \\ \text { MDS-C1-SP []-075 } \end{gathered}$		0.75
$\begin{aligned} & \mathrm{MDS}-\mathrm{B}-\mathrm{SP}[]-15 \\ & \text { MDS-C1-SP []-15 } \end{aligned}$	1.5
$\begin{aligned} & \text { MDS-B-SP }[]-22 \\ & \text { MDS-C1-SP }[]-22 \end{aligned}$	2.2	2.2
$\begin{aligned} & \mathrm{MDS}-\mathrm{B}-\mathrm{SP}[]-37 \\ & \mathrm{MDS}-\mathrm{C} 1-\mathrm{SP}[1-37 \end{aligned}$	3.7	3.7
MDS-B-SP []-55 MDS-C1-SP []-55	5.5	5.5
$\begin{aligned} & \text { MDS-B-SP []-75 } \\ & \text { MSD-C1-SP [1-75 } \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	7.5
MDS-B-SP []-110 MDS-C1-SP []-110	$\begin{aligned} & 5.5 \\ & 7.5 \\ & 11 \end{aligned}$	11
MDS-B-SP []-150 MDS-C1-SP []-150	$\begin{aligned} & 7.5 \\ & 11 \\ & 15 \end{aligned}$	
MDS-B-SP []-185 MDS-C1-SP []-185	$\begin{gathered} 11 \\ 15 \\ 18.5 \end{gathered}$	
MDS-B-SP []-220 MDS-C1-SP []-220	$\begin{gathered} 11 \\ 15 \\ 18.5 \\ 22 \end{gathered}$	
MDS-B-SP []-260 MDS-C1-SP []-260	$\begin{gathered} 11 \\ 15 \\ 18.5 \\ 22 \\ 26 \end{gathered}$	
$\begin{gathered} \text { MDS-B-SP []-300 } \\ \text { MDS-C1-SP []-300 } \end{gathered}$	$\begin{gathered} 15 \\ 18.5 \\ 22 \\ 26 \\ 30 \end{gathered}$	
MDS-B-SP []-370	$\begin{gathered} 15 \\ 18.5 \\ 22 \\ 26 \\ 30 \\ 37 \end{gathered}$	
MDS-B-SP []-450	$\begin{aligned} & 22 \\ & 26 \\ & 30 \\ & 37 \\ & 45 \end{aligned}$	
MDS-B-SP []-550	$\begin{aligned} & 30 \\ & 37 \\ & 45 \\ & 55 \end{aligned}$	

Note 1: [] can be H, M, X, HX, MX or none.
Note 1: Applicable unit depends on the range of power constant of motor. Inquire of Mitsubishi about the detail of the combinations.

5. AC Servo/Spindle System Connection

CONTENTS

Chapter I MDS-C1 Series Servo/Spindle System Configuration Section

1. Outline I-2
2. Drive Section System Configuration I-4
3. Unit Installation I-12
4. Connection of Each Unit I-16
4.1 Layout of each unit I-17
4.2 Link bar specifications |-17
4.3 Unit separated layout I-19
4.4 Precautions for installing multiple power supply units I-20
4.5 Precautions for installing only one power supply unit for the 2CH communication specifications with the NC (For 2-system control) I-21
4.6 Connection of battery unit I-22
4.6.1 Battery unit I-22
4.6.2 Connection I-22
5. Drive Section Connector and Cable Specifications I-24
5.1 Half pitch cable connection system I-24
5.2 Cable details I-26
5.2.1 Communication cable SH21 (semi ordered product) I-26
5.2.2 Terminator A-TM (ordered part) I-26
5.2.3 Servo drive unit detector cable I-27
5.2.4 Brake cable I-29
5.2.5 Communication cable SH21 connector I-30
5.2.6 Cannon plug for servomotor detector I-31
5.2.7 Cable wire I-33
5.2.8 Cable protection tube (noise countermeasure) I-34
5.2.9 Oil-proof type servomotor cable connectors (Recommendation 1) I-35
5.2.10 Oil-proof type servomotor connectors (Recommendation 2) I-36
5.2.11 Cable clamp I-37
5.2.12 Spindle control circuit cable list I-38
5.2.13 Cable assembly procedure (Excluding SH21 cable). I-53
6. Outline Drawing I-58
6.1 Panel installation structure 1-58
6.2 Power supply unit I-59
6.3 1-axis servo drive unit/2-axis servo drive unit/spindle servo drive unit I-60
6.4 Battery unit. 1-61
6.5 AC reactor. I-62
6.6 Dynamic brake unit. I-63
6.7 Contactor I-63
6.8 Circuit Breaker (CB) I-63
7. Heating Value I-66
8. Selection of Capacity I-68
8.1 Selection of the power supply unit capacity I-68
8.1.1 Selection with rated capacity (continuous rated capacity) I-68
8.1.2 Selection with maximum momentary rated capacity I-70
8.1.3 Selection data I-70
8.1.4 Selection example I-71
8.2 Selection of leakage breaker I-72
8.3 Noise filter I-73
8.4 Selection of power supply capacity I-75
8.5 Selection of wire size I-76
8.6 Selection of $A C$ reactor, contactor and CB I-81
Chapter II MDS-C1-CV Power Regeneration Type Power Supply Section
9. Power Regeneration Type Power Supply II-2
1.1 C1-CV Outline II-2
1.2 Model configuration II-2
1.3 List of unit models and outlines II-3
1.4 List of specifications II-7
1.5 Hardware and parameter setting II-9
1.6 Status display II-10
1.6.1 7-segment LED display II-10
1.6.2 Charge lamp II-10
1.7 List of alarms and warnings II-11
1.8 Explanation of connectors and terminal block II-13
1.9 Power supply external emergency stop function II-14
1.10 Main circuit connection II-17
Chapter III MDS-C1-Vx Servo System Section
10. Outline III-2
11. Motor III-4
2.1 Outline III-4
2.2 Model configuration III-5
2.3 Main equipment list III-7
2.4 Specifications list III-8
2.5 Torque characteristics III-15
2.6 Duty drive characteristics III-22
2.7 Outline dimension drawings III-25
2.8 Motor connection III-43
2.9 Motors with electromagnetic brake III-48
2.10 Motor vibration resistance III-53
2.11 Motor shaft strength III-54
2.12 Environmental conditions III-56
12. Detectors III-58
3.1 List of detector specifications III-58
3.2 Serial pulse encoder III-59
3.2.1 Features III-59
3.2.2 Types III-59
3.2.3 Outline dimension drawings III-60
3.2.4 Cable connection diagram III-63
3.2.5 Maintenance III-64
3.3 Scale I/F unit III-65
3.3.1 Outline III-65
3.3.2 Model configuration III-65
3.3.3 List of specifications III-65
3.3.4 Unit outline dimension drawing III-66
3.3.5 Description of connector. III-67
3.3.6 Example of scale I/F unit connection III-68
3.3.7 Cables III-70
13. Servomotor and Detector Installation III-72
4.1 Installation III-72
4.2 Coupling with the load III-76
14. MDS-C1-V1 Servo Drive III-80
5.1 Availability of 2-system (standard drive unit mode and high-gain drive unit mode) III-80
5.2 Model configuration III 81
5.3 Specifications list III-82
5.4 Connection of dynamic brake unit III-85
5.5 Hardware setting III-87
5.6 Parameter settings III-88
5.6.1 Standard Parameters (Standard Drive unit) III-89
5.6.2 High-gain Parameters (High-gain Drive unit) III-113
5.7 Alarms and Warnings III-138
5.8 Explanation of connector and terminal block III-147
5.9 Main circuit and brake connection III-148
5.9.1 Main circuit III-148
5.9.2 Brake III-150
5.10 Wiring system diagrams for systems III-151
5.11 D/A output function III-154
5.11.1 Outline III-154
5.11.2 Hardware specifications III-154
5.11.3 Parameters III-154
5.11.4 Output data No. III-155
5.11.5 Setting of output magnification III-155
5.11.6 Others III-156
15. MDS-C1-V2 Servo Drive III-158
6.1 Model configuration III-158
6.2 Servo drive unit specifications III-159
6.3 Hardware setting III-163
6.4 Status display III-164
6.5 Explanation of terminal block and connectors III-166
6.6 Main circuit connection III-167
16. Selection of Capacity III-170
7.1 Selection of servo system III-170
7.1.1 Types of drive systems III-170
7.1.2 Selection of servomotor III-171
7.2 Determining the coasting amount with emergency stop III-182
Chapter IV MDS-C1-SP Spindle System Section
17. Outline IV-2
1.1 Features of the MDS-C1-SP spindle system IV-2
1.2 Precautions for use. IV-2
1.3 Model configuration IV-3
1.4 Configuration IV-4
1.4.1 Basic configuration (no added functions) IV-4
1.4.2 With orientation function IV-4
1.4.3 High-speed synchronous tap/spindle synchronization/with orientation function IV-6
1.4.4 OSE90K+1024 encoder C-axis control/with orientation function IV-7
1.4.5 OSE90K+1024 encoder C-axis control and high-speed synchronous tap/ spindle synchronization/with orientation function IV-8
1.4.6 MBE90K encoder C -axis control/with orientation function IV-9
1.4.7 MBE90K encoder C-axis control and high-speed synchronous tap/ spindle synchronization/with orientation function IV-9
1.4.8 MHE90K encoder C -axis control/with orientation function IV-10
1.4.9 MHE90K encoder C-axis control and high-speed synchronous tap/ spindle synchronization/with orientation function IV-10
1.5 Device-to-device connections IV-11
18. Specifications IV-14
2.1 AC spindle motor and controller specifications IV-14
2.2 Output characteristics IV-19
2.3 Outline dimension drawings IV-22
2.3.1 Motor IV-22
19. Status Display and Parameter Settings IV-30
3.1 Status display with 7-segment LED IV-30
3.2 Spindle parameters IV-31
3.3 Spindle specification parameters screen IV-60
3.4 Spindle monitor screen IV-64
3.5 Control input signals IV-68
3.6 Control output signals IV-71
3.7 Meter outputs IV-74
3.8 Output interface IV-76
3.9 Spindle protection/warning functions IV-77
20. Optional Specifications and Parts IV-80
4.1 Orientation specifications (optional) IV-80
4.1.1 1-point orientation using magnetic sensor IV-80
4.1.2 4096-point orientation using encoder IV-88
4.1.3 4096-point orientation using motor built-in encoder IV-91
4.1.4 Operation of orientation IV-91
4.2 Synchronous tap function (option) IV-94
4.2.1 Closed type synchronous tap IV-94
4.2.2 Semi-closed type synchronous tap IV-94
4.2.3 Operation of synchronous tap IV-94
4.3 C-axis control (optional) IV-95
4.3.1 When using encoder (OSE90K+1024 BKO-NC6336H01) IV-95
4.3.2 When using built-in encoder (MBE90K) IV-98
4.3.3 When using built-in encoder (MHE90K) IV-98
4.4 Single parts (optionally supplied parts) IV-99
4.4.1 Power step-down transformer IV-99
4.4.2 Noise filter IV-101
4.5 Other optional specifications IV-103
4.6 Theoretical acceleration and deceleration times IV-104
Chapter V IPM Spindle Drive System Section
21. Outline V-2
1.1 Outline V-2
1.2 Features of MDS-C1-SPM Series V-2
1.3 Precautions for use V-2
22. Configuration of Drive System V-4
2.1 Basic system configuration drawing V-4
2.2 Combination with power supply unit V-4
2.3 List of IPM spindle drive units V-5
23. Setting the IPM Spindle Drive Unit Parameters V-8
3.1 Bit selection parameters V-8
3.2 Setting the unit type, motor and power supply unit V-10
3.3 Spindle monitor screen V-11
3.4 List of spindle protection functions and warning functions V-15
24. Setup Procedures V-18
4.1 Wiring the drive unit V-18
4.2 Setting the parameters V-18
4.3 PLG Z-phase automatic adjustment V-18
4.4 PLG automatic adjustment of SPM unit V-19
4.5 Alarms V-19
4.6 Handling the motor V-19
4.6.1 Storage V-19
4.6.2 Assembly (built-in type) V-19
25. IPM Spindle Motor Specifications V-22
5.1 IPM spindle motor specifications V-22
5.2 Motor outline drawings V-23
Appendix 1 EN Standards Step-down Insulation Transformer AI-2
Appendix 2 EMC Installation Guidelines All-2
26. Introduction AII-2
27. EMC Instructions AII-2
28. EMC Measures AII-3
29. Measures for panel structure AII-3
4.1 Measures for control box unit AII-3
4.2 Measures for door AII-4
4.3 Measures for operation board panel AII-4
4.4 Shielding of the power supply input section AII-4
30. Measures for various cables AII-5
5.1 Measures for wiring in box AII-5
5.2 Measures for shield treatment AII-5
5.3 Servomotor power cable AII-6
5.4 Servomotor feedback cable. AII-6
5.5 Spindle motor power cable AII-7
5.6 Spindle motor feedback cable AII-7
5.7 Cable between control box and operation board panel AII-7
31. EMC Countermeasure Parts AII-8
6.1 Shield clamp fitting AII-8
6.2 Ferrite core AII-9
Appendix 3 Unit system AllI-2
Appendix 4 Classification of Servo/Spindle Drive Unit Circuits Based on Higher Harmonic Suppression Countermeasures Guidelines AIV-2
Appendix 5 Explanation of Large Capacity Spindle Unit Specifications AV-2
32. Outline AV-2
33. List of units AV-2
34. Selection of $A C$ reactor ($\mathrm{B}-\mathrm{AL}$), contactor and CB AV-2
35. Outline of units AV-3
36. Panel cut dimension drawing AV-4
37. Detailed outline drawing AV-5
38. Heating value AV-8
39. Selection of power capacity AV-8
40. Selecting the wire size AV-8
41. Drive unit connection screw size AV-9
42. Connection of each unit AV-9
43. Restrictions AV-11
44. Parameters AV-12
45. Precautions AV-12

I. MDS-C1 Series

Servo/Spindle System Configuration Section

1. Outline I-2

1. Outline

MDS-C1 Series servo and spindle system outline

The MDS-C1 Series is MELDAS drive system that has been developed totally connected the servo drive and spindle drive sections.
The MDS-C1 Series is the successor to the MDS-B Series, and has been developed to satisfy European Safety Standards. This Series has the following features.

(1) Compact and lightweight

The converters that were conventionally built in each servo and spindle drive have been integrated into one unit. The drive system volume, installation area and weight have been drastically reduced with the incorporation of high density mounted electronic parts IGBT-IPM (Intelligent Power Module) and the high performance heat radiating fin.

(2) Standardization of dimensions

The outline has been standardized to the book end type, and by unifying the height and depth dimensions, installation in control box has been made easy. Furthermore, by matching the shape with the NC unit (M500 Series), an integrated appearance with the NC has been realized.

(3) Low heat generation

By incorporating the IPM and using power supply regeneration in the servo drive, the amount of heat generated has been greatly reduced.
(4) High speed and precision processing

A high speed CPU has been mounted on the control PCB, and a 100,000 pulse/rotation sub micron detector has been incorporated as a standard to allow faster and more precise interpolation.
By incorporating the stable position loop control (SHG control) method, having an outstanding response, the positioning time and tracking have been improved and the machine vibration during acceleration/deceleration has been reduced.
The cutting performance and cutting precision during position control have been improved by using the high speed CPU also for the spindle drive.
(5) High speed spindle orientation

Smooth operations and minimum orientation times have been realized by using the high speed orientation method while allows direct orientation from the high speed during the spindle drive.
(6) Features of the MDS-C1 Series
(a) European Safety Standards compliant

This Series complies with the European Safety Standards (LVD Directives). (Refer to the section "Compliance to European EC Directives" for details.)
(Note that the C1 Series target units are limited to the CV (power regeneration power supply), SP (spindle drive) and V1/V2 (1, 2-axis servo drive).)
(b) Addition of power supply emergency stop input line

With the C1 Series, the external contactor can be directly shut off from the power supply even when the emergency stop hot line from the NC does not function for any reason.
(This function is validated with the rotary switch and connected drive parameter settings. Thus, the functions do not change from the conventional functions when used in the same manner as the A Series.)
2. Drive Section System Configuration ... I-4

2. Drive Section System Configuration

WARNING

1. Wiring and inspection work must be done by a qualified technician.
2. Wait at least 15 minutes after turning the power OFF before starting wiring or inspections. Failure to observe this could lead to electric shocks.
3. Wire the servo drive unit and servomotor after installation. Failure to observe this could lead to electric shocks.
4. Do not damage, apply forcible stress, place heavy items or engage the cable. Failure to observe this could lead to electric shocks.

CAUTION

1. Correctly carry out the wiring. Failure to do so could lead to runaway of the servomotor, or to injuries.
2. Do not mistake the terminal connections. Failure to observe this item could lead to ruptures or damage, etc.
3. Do not mistake the polarity (\oplus, Θ). Failure to observe this item could lead to ruptures or damage, etc.
4. Do not reverse the direction of a diode which connect to a DC relay for the control output signals to suppress a surge. Connecting it backwards could cause the drive unit to malfunction so that signals are not output, and emergency stop and other safety circuits are inoperable.
5. Reduce magnetic damage by installing a noise filter,etc. The
 electronic devices used near the servo drive unit could be affected by magnetic noise.
6. Do not install a condensing capacitor, surge absorber or radio noise filter on the output side of the servo drive unit.
7. Provide a sequence that shut off the power at the regenerative resister error signal-ON when using the regenerative resistor. The regenerative resistor could abnormally overheat and cause a fire due to a fault in the regenerative transistor, etc.
8. Never make modifications.
9. Some parts are the MDS-C1 Series instead of the MDS-B Series. The basic specifications do not differ, but if newly added functions or a newly added capacity is being used, always confirm the changed points before starting use.

Cautions for using MDS-C1 Series
1. The power supply unit MDS-C1-CV-370 has a different rush sequence from the other power
supplies. Thus, always install an external contactor. Do not share the contactor with other power
supplies.
2. The servo drive unit MDS-C1-V1-110/150 does not have built-in dynamic brake. Thus, always use
an external dynamic brake unit.

(1) Basic system configuration (Example: Spindle +3 -axis servo)

(Note 1) In systems which use a spindle drive unit, the spindle drive unit must be placed next to the power supply unit as shown above. Also install the 11 kW and higher servo drive unit next to the power supply unit.
If also using spindle drive units, arrange the units next to the power supply in decreasing order of drive capacity size.
(Note 2) Excluding MDS-C1-CV-370, the use of a contactor can be selected.
Excluding MDS-C1-CV-370, use is possible without a contactor, but use of a contactor is recommended for safety purposes.
The rotary switch on the power supply unit must be set as follows according to whether the contactor is installed.
$\begin{cases}\text { Contactor installed } & \text { Rotary switch setting }=0 \\ \text { Contactor not installed...... } & \text { Rotary switch setting }=1\end{cases}$
(2) List of units

(b) Spindle drive unit ... Spindle motor control

No.	Model MDS-C1-	Capacity (kW)	Dimensions ($\mathrm{H} * \mathrm{~W} *$ Dmm) Type		Power supply unit for single spindle	Remarks
1	SP-04	0.4	380*60*180		CV-37	
2	SP-075	0.75	$380 * 60 * 180$	A0	CV-37	
3	SP-15	1.5	380*60* 180		CV-37	
4	SP-22	2.2	380*60*255		CV-37	
5	SP-37	3.7	380*60*255		CV-37	
6	SP-55	5.5	380* 90*255		CV-55	
7	SP-75	7.5	380*90*255		CV-75	
8	SP-110	11.0	380* 90*255		CV-110	
9	SP-150S	15.0	380* 90*255		CV-150	
10	SP-150	15.0	380* 120*255		CV-150	
11	SP-185	18.5	380*120*255		CV-185	
12	SP-220	22.0	380*150*255	D1	CV-220	
13	SP-260	26.0	380*150*255		CV-260	
14	SP-300	30.0	380*150*255		CV-300	

(Note) Limits apply to continuous operation of V1-45S and V1-70S.

(Note) Limits apply to continuous operation of V2-7070S.
(3) List of unit dimensions

Outline dimensions of each unit Outline type	A0/A1	B1	C1	D1/D2
Outline drawing (mm)		Fin section D: $75 \mathrm{~W}: 90$ (Including wind passage space of 15) D: 255 $\text { H: } 380$	Fin section D: $75 \mathrm{~W}: 120$ (Including wind passage space of 15)	Fin section D: 75 (Including wind passage spaces of D1: 15, D2: 12)

Precautions

The depth of the fin section for the MDS-C1 Series is smaller than the MDS-A/B Series due to the high efficiency radiation of heat structure.
Provide a wind passage space of 15 mm or more behind the fins so that the cold air can pass through. (Provide 12mm or more for the D2 type.)
Units with an "S" at the end of the model have a smaller unit width than the existing series.
Thus, when designing the control box with this unit's outline dimensions, there may be cases when the existing drive unit cannot be installed.
3. Unit Installation .. I-12

3. Unit Installation

3. Unit Installation

CAUTION

1. Correctly transport the product according to its weight.
2. Do not stack products past the limit.
3. Install servo drive unit, servomotor and regenerative resistor unit on noncombustible material. Direct installation on combustible material or near combustible material could lead to fires.
4. Follow this Instruction Manual and install the unit in a place where the weight can be borne.
5. Do not get on top of or place heavy objects on the unit.
6. Store and use the units under the designated environmental conditions.
7. Do not allow conductive matter such as screw or cutting chips or combustible matter such as oil enter the servo drive unit or servomotor.
8. Do not block the intake or exhaust ports of the servomotor provided with a cooling fan.
9. The servo drive unit and servomotor are precision devices, so do not drop or apply strong impacts on them.
10. Do not install or operate servo drive units or servomotors that are damaged or that have missing parts.
11. When storing the unit for a long time, contact the Service Center or Service Station.
(1) Each unit is designed to be installed in a cabinet such as a power distribution box. Avoid installation in direct sunlight, near heat generating objects or outdoors.
(2) The inner working environment (temperature, humidity, vibration, atmosphere) of the cabinet must be within the limits given in the "Specifications for each unit". The cabinet for the cutting machine must be a totally closed type cabinet.
(3) Make considerations so that inspections and replacement during maintenance is easy. The required space around each unit is shown in the outline dimensions drawing.
(4) Each unit generates some heat, so leave a space on the top and bottom when installing other equipment or parts.
Refer to the outline drawing for the square hole dimensions. In this case, insert packing between the unit and power distribution box. Refer to the following installation examples for the installation of the servo drive unit.
(5) Provide a structure that separates the intake and outtake. If the air behind the fin is not discharged properly, causing heat to accumulate, always install the forced outtake fan.

Example 1. Leave space for air flow when the power distribution box is at the rear of the machine. If heat accumulates behind the fin, install forced air cooling (FAN) to discharge the heat.

[Unit: mm]

Example 2. When the outdoor air cooling section is to protrude from the power distribution box, make sure that cutting chips, etc., do not enter the outtake section.
If heat accumulates behind the fin, install forced air cooling (FAN) to discharge the heat outside the box.

CAUTION

1. Do not hold the front cover when transporting the servo drive unit. The unit could drop.
2. Always observe the installation directions.
3. Secure the specified distance between the servo drive unit and control panel, or between the servo drive unit and other devices.

Note 1. When installing in a poor environment (factories with large quantities of oil mist), install a filter on the intake section.
Note 2. When assembling the control box, make sure that drill cutting chips, etc., do not enter the drive unit.
Note 3. Make sure that oil, water and cutting chips do not enter the drive unit from the control box clearances or fan on top of the control box.
Note 4. When the unit is at the places having high levels of toxic gases or dust, protect the drive unit by air purging (preventing the entry of toxic gases and dust by feeding clean air from an external source, so that inner pressure of control panel is higher than the outside air).

(6) Installation of cooling fan

Each unit (excluding types without fin) are individually provided with cooling fans. If the area around the fan becomes hot (if heat builds-up), install an agitating fan.
Refer to 1) or 2) below according to the panel structure, and install.
(a) Installing the fan below the heat radiation fins

When using the totally closed type unit
installation method and the box
structure in which cutting oil and dust.
etc., easily enters the unit's fan and fin
section (a structure where the fan may stop easily due to the working environment), the user should install a fan at the position indicated as FAN. Forced cooling should then be performed with a velocity of $2 \mathrm{~m} / \mathrm{s}$ or higher. Also consider the maintainability in this case.

(b) Installing the fan above the unit

Due to the structure, heat will tend to accumulate on the top of each unit. Thus, install a fan in the power distribution box to mix the heat at the top of each unit.

		E 0 E 0 0 0 0 0 0 0		

Front view of units in power distribution box
4. Connection of Each Unit I-16
4.1 Layout of each unit I-17
4.2 Link bar specifications I-17
4.3 Unit separated layout I-19
4.4 Precautions for installing multiple power supply units I-20
4.5 Precautions for installing only one power supply unit for the 2CH communication specifications with the NC (For 2-system control) I-21
4.6 Connection of battery unit I-22
4.6.1 Battery unit I-22
4.6.2 Connection I-22

4. Connection of Each Unit

CAUTION

1. Shut off the power on the servo drive unit side if a fault occurs in the servo drive unit. Fires could be caused if a large current continues to flow.
2. Provide a sequence that shut off the power at the regenerative resister error signal-ON when using the regenerative resistor. The regenerative resistor could abnormally overheat and cause a fire due to a fault in the regenerative transistor, etc.
3. Use a double circuit configuration that allows the operation circuit for the magnetic brakes to be operated even by the external emergency stop signal.
4. MDS-C1-V1-110/150 does not have built-in dynamic brake. Always use an external dynamic brake unit.
Wire the power supply and main circuit as shown below.
Always use a Circuit Breaker (CB) on the power supply input wire.

4.1 Layout of each unit

Layout the units according to the following reference as a principle.
(1) When total of spindle motor output and servomotor output is 38 kW or less
Σ (Spindle motor output) $+\mathrm{k} \Sigma$ (servomotor output) $\leq 38 \mathrm{~kW}$

(2) When total of spindle motor output and servomotor output is larger than 38kW Σ (Spindle motor output) $+\mathrm{k} \Sigma$ (servomotor output) $>38 \mathrm{~kW}$

CAUTION
Always connect the power supply unit No. 1 and No. 2 L+ and L- link bars independently.

(Note) The clearance between each unit should generally be 3 cm or less.
If the spindle drive unit and servo drive unit must be separated by more than 3 cm , observe the conditions listed in section "4.3".

4.2 Link bar specifications

The link bar is the following part, and must be manufactured by the user:
$L+, L-\quad$ - A connection wire used to supply the converter's DC voltage from the power supply unit to each drive unit.

L11, L21 - A connection wire used to supply the 200VAC control power to each unit.
This does not necessary need to be a bar (plate), but can be a wire. The terminal block for link bar connection is the following regardless of the capacity:

L+, L- M6 screw
L11, L21 M4 screw
An outline connection drawing is shown on the following page for reference.

(1) Outline connection drawing

(Note) Mount the terminal cover after wiring as shown on the left. The terminal cover differs for each unit width. Refer to section " 8.5 " for selecting the wire size.

4.3 Unit separated layout

When installing vertically, avoid separating the spindle drive unit (C1-SP) and power supply unit (C1-CV) as shown in (Example 1) below. Do not separate the 11 kW and higher servo drive units either.
When using both spindle drive units and 11 kW and higher servo drive units, arrange them next to the power supply unit in the following order of priority.
V1-150 > V1-110 > SP-300 > SP-260 > SP-185 > SP-150

For example, when using a combination of SP-260 and V1-150, place the V1-150 next to the power supply unit, and the SP-260 next to that.
The 9kW and below servo drive unit can be installed vertically as shown in (Example 2). Note that the relay link bar length must be 50 cm or less, and two bars must be bundled.
(Example 1) NG

(Example 2) OK

(Note) The above details also apply when separating the units to the left and right and installing.

4.4 Precautions for installing multiple power supply units

CAUTION
Always use this wiring when using MDS-C1-CV-370. (Refer to "8.1.1 (Note 4)".)

The rush circuit and contactor operation sequence of MDS-C1-CV-370 differs from the other power supply units (C1-CV). Thus, always install an independent contactor. If the contactor is not used or if shared with other power supply units, damage will occur.
A system in which a power supply unit (C1-CV (No. 1)) is installed for the spindle drive unit and one (C1-CV (No. 2)) is installed for the servo drive unit is explained as a representative example of multiple power supply unit installation. The same connections are used for other multiple installation systems.

Fig. 1
(a) Connection of NC communication cable
(i) When battery unit (A-BT) is required (when absolute position detection specifications are used)
Connect with the lines (1) to (4) in Fig. 1.
(ii) When battery unit (A-BT) is not required (when absolute position detection specifications are not used).
The (4) connection cable and battery unit will not be required so insert a terminator (A-TM) into the terminating axis CN1B (C1-SP in Fig. 1).
(b) Connection of communication cable between drive unit and power supply unit Connect the (6) cable to C1-CV (No. 1) and the (5) cable to C1-CV (No. 2) as shown in Fig. 1.
(c) Connection of $L+, L-, L 11$ and $L 21$ link bars

As shown in Fig. 1, the link bar for C1-CV (No. 1) and for C1-CV (No. 2) are connected independently. Make sure that neither of the link bars are short circuited and connected.
(d) Connection of AC reactor

Always use one AC reactor per power supply unit, and install the AC reactor for the C1-CV (No. 1) and C1-CV (No. 2) separately as shown in Fig. 1.

4.5 Precautions for installing only one power supply unit for the 2CH communication specifications with the NC (For 2-system control)

* Note that this method cannot be used with the A-CR.

The following systems will be explained in this section. The other 2 CH systems also use the same specifications.

Fig. 2
(a) Connection of NC communication cable
(i) CH 1 Connect with the lines (1) to (2) shown in Fig. 2.
(ii) CH 2 Connect with the lines (3) to (4) shown in Fig. 2.
(b) Connection of communication cable between drive unit and power supply unit
(i) CH 1

Connect from the CH 1 terminating axis (C1-SP in Fig.2) with the line (5). The pin assignments for cable (5) are the same as the standard specifications. (Refer to section "5.2.1".)
(ii) CH 2

Connect from the CH 2 terminating axis (C1-V2 in Fig. 2) with the line (6). The pin assignments for cable (6) are the same as the standard specifications.

4.6 Connection of battery unit

4.6.1 Battery unit

A battery unit is required for the absolute position system that MDS-C1-V1/V2 Series have used. One battery unit can backup the absolute position data for several axes' servo drive unit. Select the battery unit corresponding to the number of absolute position detector axes from the following table.

Battery option specifications

Item	Battery unit			
Model	MDS-A-BT-2	MDS-A-BT-4	MDS-A-BT-6	MDS-A-BT-8
Nominal voltage	3.6V			
Nominal capacity	4000mAh	8000mAh	12000mAh	16000 mAh
No. of possible connections (total number of absolute position detectors)	2 axes or less	4 axes or less	6 axes or less	7 axes or less
No. of backup axes	Max. 7 axes in one system (in same wiring)			
Battery continuous back up time	Approx. 12,000 hours			
Battery useful life	7 years from date of unit manufacture			
Data save time during battery replacement	HC Series: 20 hours at time of delivery, 10 hours after 5 years			
Back up time from battery warning to alarm occurrence	Approx. 100 hours			

1. To protect the absolute position, do not shut off the drive unit control power supply if the battery voltage becomes low (warning 9F).

^. CAUTION

2. The battery life will be greatly affected by the ambient temperature. The above data shows the theoretic values for when the ambient temperature of the battery is $25^{\circ} \mathrm{C}$. If the ambient temperature rises, generally the back up time and useful life will be shorter.
3. Contact the Service Center when replacing.

4.6.2 Connection

A terminal connector is built-in, so set as the final connection of the NC and communication cable.

5. Drive Section Connector and Cable Specifications I-24
5.1 Half pitch cable connection system I-24
5.2 Cable details I-26
5.2.1 Communication cable SH21 (semi ordered product) I-26
5.2.2 Terminator A-TM (ordered part) I-26
5.2.3 Servo drive unit detector cable I-27
5.2.4 Brake cable I-29
5.2.5 Communication cable SH21 connector I-30
5.2.6 Cannon plug for servomotor detector I-31
5.2.7 Cable wire I-33
5.2.8 Cable protection tube (noise countermeasure) I-34
5.2.9 Oil-proof type servomotor cable connectors (Recommendation 1) I-35
5.2.10 Oil-proof type servomotor connectors (Recommendation 2) I-36
5.2.11 Cable clamp I-37
5.2.12 Spindle control circuit cable list I-38
5.2.13 Cable assembly procedure (Excluding SH21 cable) I-53

5. Drive Section Connector and Cable Specifications

5.1 Half pitch cable connection system

Half pitch cable connection system (continued)

	Cable name	Connector name on controller side (Maker)	Recommended connector name on cable side (Maker)	Cable materials (Maker)	Cable creation tool (Maker)
	CNP5	20220-52A2JL	(1) Controller side Plug (soldered-type): 10120-3000VE (3M) Shell (soldered-type): 10320-52F0-008(3M) (2) Detector side Connector: AMP-350720-1 (Japan Amplifier) Pin: AMP-350689-1 (Japan Amplifier)	$\begin{array}{\|l} \hline \text { A14B2343 } \\ \text { 2PX0.3SQ+10PX0.2SQ } \\ \text { (DDK) } \end{array}$	
	CNP6	Same as above	(1) Controller side Same as above (2) Detector side (a) Magnetic sensor TRC116-12A10-7F10.5 (Tajimi Musen) (b) Encoder MS3106A20-29S (Canon)	Same as above	
	CNP7	Same as above	(1) Controller side Same as above (2) Detector side MS3106A20-29S (Canon)	Same as above	

Cable name system

5.2 Cable details

CAUTION			
Do not mistake the connection when manufacturing the detector cable. Failure to observe this could			
lead to runaway.			

5.2.1 Communication cable SH21 (semi ordered product)

Application	Connector 1	Connector 2	L
NC \leftrightarrow drive unit	CSH21/22	CN1A	Standard: 350 mm
Drive unit \leftrightarrow drive unit	CN1B	CN1A	Standard: 350 mm
Drive unit \leftrightarrow power supply	CN4	CN4	Standard: 350 mm
Drive unit \leftrightarrow battery unit	CN1B	CN1A1	Standard: 350mm

5.2.2 Terminator ATM (ordered part)

5.2.3 Servo drive unit detector cable

(1) Detector cable for OSE104■/OSA104D/OSE105口/OSA105口
(a) CNV12, CNV13, CNV12L, CNV12M, CNV13L, CNV13M (cable length $\leq 20 \mathrm{~m}$)

Part No.	Part name	Model	Qty/type			Maker
			$\begin{array}{\|c} \hline \text { 2-typ } \\ \text { e } \end{array}$	$\begin{gathered} \text { 3-typ } \\ \text { e } \end{gathered}$	E-type	
101	Connector (shell)	10320-52F0-008	1	1	1	3M
102	Connector (plug)	10120-3000VE	1	1	1	3M
103						
104	Cable	TS-91026 2P $\times 0.3 \mathrm{SQ}+10 \mathrm{P} \times 0.2 \mathrm{SQ}$	1	1	1	BANDO Electric Wire
105	Cannon connector	MS3108B22-14S		1		DDK, Japan Aviation Electronics
106	Connector clamp	MS3057-12A	1	1		DDK, Japan Aviation Electronics
107						
108	Cannon connector	MS3106B22-14S	1			DDK, Japan Aviation Electronics

The connector shell on the servo drive unit is the 3M "10320-52F0-008 but this is a shell with a one-touch locking mechanism that does not require screw locking.
When ordering the cables from Mitsubishi, the shell "10320-52F0-008" with this one-touch lock mechanism will be used.
However, if the cable is to be manufactured by the user, the shell "10320-52A0-008" (3M) with the screw locking mechanism can be
(b) CNV12, CNV13, CNV12L, CNV12M, CNV13L, CNV13M ($20 \mathrm{~m}<$ cable length $\leq 30 \mathrm{~m}$)

(Note) The cable length must be 30 m or less.
(2) Detector cable for OHE25K-ET/OHA25K-ET
(a) CNV13, CNV13L, CNV13M (cable length $\leq 20 \mathrm{~m}$)

(b) CNV13, CNV13L, CNV13M (20 m < cable length $\leq 30 \mathrm{~m}$)

(Note) The cable length must be 30 m or less.

5.2.4 Brake cable

(1) 9kW and below Mechanical brakes

Part No.	Part name	Model	Maker
101	Connector	$1-178128-3$	Japan Amplifier
102	Contact	$1-175218-2$	Japan Amplifier

Wire size : 0.5 to 1.25 SQ

(2) $11 \mathrm{~kW}, 15 \mathrm{~kW}$ Mechanical brakes and dynamic brakes

Part No.	Part name	Model	Maker
101	Connector	$1-178128-3$	Japan Amplifier
102	Contact	$1-175218-2$	Japan Amplifier

Wire size : 0.5 to 1.25 SQ

5.2.5 Communication cable SH 21 connector

(a) 10320-3210-000

$\square A$	$\square B$	$\square C$	$\square D$	$\square E$	$\square F$	$\square G$ $(-A 00)$	$\square G$ $(-B 00)$	$\square G$ $(-C 00)$
29.7	20.9	33.0	$\boxed{\square} .7$	23.8	27.45	16.55	13.15	9.15

Designated dimension tolerance

Dimension	.0	.00
Tolerance	$\pm .3$	$\pm .13$
Unit $: \mathrm{mm}$		

Recommended panel cut dimensions drawing

Reference drawing for combination

(b) 10320-52F0-008

5．2．6 Cannon plug for servomotor detector

1．Standard plug

（1）Angle plug MS3108B22－14S（for OSE104■／OSA104口／OSE105口／OSA105口）

＊Key position of cannon connector：motor flange direction

（2）Straight plug MS3106B22－14S（for OSE104ロ／OSA104ロ／OSE105口／OSA105口）

The servo drive unit and the motor are not provided with connector and cables．

2．JIS corresponding plugs（Hirose）

If the JIS B6015 standards must be followed，use the following connectors．
（JIS B6015 standards）
a．In accordance to MIL－C－5015（US military standards）
b．Structure in which grounding is connected before other circuits are connected，and shut off after other circuits are shut off．
c．Waterproof and oil－proof．
（1）Angle plug H／MS3108B22－14S－N（for OSE104ロ／OSA104ロ／OSE105ロ／OSA105口）

（2）Straight plug H／MS3106A22－14S－N（for OSE104ロ／OSA104ロ／OSE105口／OSA105口）

5. Drive Section Connector and Cable Specifications

5.2.7 Cable wire

The following shows the specifications and processing of the wire used in each cable. Manufacture the cable using the following recommended wire or equivalent parts.

Recommended wire model (Cannot be directly ordered from Mitsubishi Electric Corp.)	Finished outside diamete r	Sheath material	No. of pairs	Wire characteristics				Application
				Configuration	```Conducto r resistanc e```	Withstand voltage	Insulation resistance	
UL20276 AWG28 10pair	6.1 mm	PVC	10	$\begin{aligned} & 7 \text { strands/ } \\ & 0.13 \mathrm{~mm} \end{aligned}$	$222 \Omega / \mathrm{km}$ or less	$\begin{gathered} \text { AC350/ } \\ 1 \mathrm{~min} \end{gathered}$	1 M / $/ \mathrm{km}$ or more	NC unit communication cable
A14B2343 (Note)	7.2 mm	PVC	6	$\begin{gathered} 40 \\ \text { strands/ } \\ 0.08 \mathrm{~mm} \end{gathered}$	105 $/$ /km or less	$\begin{gathered} \text { AC500/ } \\ 1 \mathrm{~min} \end{gathered}$	$1500 \mathrm{M} \Omega / \mathrm{km}$ or more	Detector cable

(Note) Junko Co. (Dealer: Toa Denki)

Cable assembly

Assemble the cable as shown in the following drawing, with the cable shield wire securely connected to the ground plate of the connector.

5.2.8 Cable protection tube (noise countermeasure)

If influence from noise is unavoidable, or further noise resistance is required, selecting a flexible tube and running the signal cable through this tube is effective. This is also an effective countermeasure for preventing the cable sheath from being cut or becoming worn.
A cable clamp (MS3057) is not installed on the detector side, so be particularly careful of broken wires in applications involving bending and vibration.

Supplier	Tube	Connector		
		Drive unit side	Installation screws	Motor detector side
Nippon Flex Control Corp.	FBA-4 (FePb wire braid sheath)	RBC-104 (straight) RBC-204 (45) RBC-304 (90)	$\begin{aligned} & \text { G16 } \\ & \text { G16 } \\ & \text { G16 } \end{aligned}$	RCC-104-CA2022
DAIWA DENGYO CO., LTD	Hi-flex PT \#17 (FePb sheath)	PSG-104 (straight) PLG-17 (90 $)$ PS-17 (straight)	Screw diameter ø26.4 Screw diameter ø26.4 PF1/2	PDC20-17
Sankei Works	Purika Tube PA-2 \#17 (FePb sheath)	BC-17 (straight)	Wire tube screws : 15	PDC20-17

(Note) None of the parts in this table can be ordered from Mitsubishi Electric Corp.

5.2.9 Oil-proof type servomotor cable connectors (Recommendation 1)

When using the motor and cable in an environment where cutting fluids or lubricants may come in contact a little, use the oil-proof specification cable connector (plug) shown below for the motor and encoder.

For motor connector

Servomotor model		(1) Cannon plug (Plug unit)		(2) NIPOLEX connector	(3) Flexible conduit	
		1) Hirose, 2) Japan Aviation Electronics, 3) DDK		Nippon Flex	Nippon Flex	Min. inner dia.
		90° angle type	Straight type			
HA053NC HA13NC HA23NC HA33NC	Standard	1) $\mathrm{H} / \mathrm{MS} 3108 \mathrm{~A} 18-12 \mathrm{~S}-\mathrm{D}$	1) $\mathrm{H} / \mathrm{MS} 3106 \mathrm{~A} 18-12 \mathrm{~S}-\mathrm{D}$	$\begin{array}{\|l} \hline \text { RCC-103CA18 } \\ \text { (with O-ring) } \\ \hline \end{array}$	VF-03	10.6
			2) JL04V-6A18-12SE-EB 3) CE05-6A18-12SD-BBSS	RCC-104CA18 (with O-ring)	VF-04	14.0
	European standard part	2) JL04V-8A18-12SE-EB 3) CE05-8A18-12SD-BBAS		RCC-106CA18 (with O-ring)	VF-06	19.0
HC52 to HC102HC53 to HC103HA50LC to HA150LCHA53LC to HA153LC(HA40NC toHA80NC)(HA43NC toHA83NC)	Standard	1) H/MS3108A22-23S-D	1) H/MS3106A22-23S-D	$\begin{aligned} & \begin{array}{l} \text { RCC-104CA2022 } \\ \text { (with O-ring) } \\ \hline \end{array}{ }^{2} \text {. }{ }^{2} \\ & \hline \end{aligned}$	VF-04	14.0
	European standard part			RCC-106CA2022 (with O-ring)	VF-06	19.0
		2) JL04V-8A22-23SE-EB 3) CE05-8A22-23SD-B- BAS	2) JL04V-6A22-23SE-EB 3) CE05-6A22-23SD-BBSS	RCC-108CA2022 (with O-ring)	VF-08	24.4
HC152 to HC452 HC203 to HC353 HA200LC to HA500LC HA203LC to HA303LC (HA100NC to HA300NC) (HA103NC to HA203NC)	Standard	1) $\mathrm{H} / \mathrm{MS} 3108 \mathrm{~A} 24-10 \mathrm{~S}-\mathrm{D}$	1) H/MS3106A24-10S-D	$\begin{aligned} & \begin{array}{l} \text { RCC-104CA2428 } \\ \text { (with O-ring) } \end{array} \\ & \hline \end{aligned}$	VF-04	14.0
				RCC-106CA2428 (with O-ring)	VF-06	19.0
	European standard part	2) JL04V-8A24-10SE-EB 3) CE05-8A24-10SD-B- BAS	2) JL04V-6A24-10SE-EB 3) CE05-6A24-10SD-BBSS	RCC-108CA2428 (with O-ring)	VF-08	24.4
HC702 to HC902 HC453 to HC703 HA700 to HA900 HA303 to HA703	Standard	-	-	-	-	-
	European standard part	CE05-8A32-17SD-B-BAS	CE05-6A32-17SD-B-BSS	$\begin{aligned} & \text { RCC-108CA } 32 \\ & \text { (with O-ring) } \\ & \hline \end{aligned}$	VF-08	24.4
				$\begin{aligned} & \text { RCC-110CA32 } \\ & \text { (with O-ring) } \\ & \hline \end{aligned}$	VF-10	33.0

For brake cable

| HC202B to HC902B
 HC203B to HC703B
 (HA40NCB to HA300NCB)
 (HA053NCB to HA203NCB) | HMS 3108A | HMS 3106A | RCC-102CA 12
 (With O-ring) | VF-02 |
| :--- | :---: | :---: | :---: | :---: | 8.3

For detector cable

$\begin{aligned} & \text { OSE104口 } \\ & \text { OSA104口 } \\ & \text { OSE105ם } \\ & \text { OSA105 } \end{aligned}$	HMS 3108B$22-14 \mathrm{~S}-\mathrm{N}$	HMS 3106A22-14S-N	$\begin{array}{\|l} \hline \text { RCC-104CA2022 } \\ \text { (With O-ring) } \\ \hline \end{array}$	VF-04	14.0
			$\begin{aligned} & \hline \text { RCC-106CA2022 } \\ & \text { (With O-ring) } \\ & \hline \end{aligned}$	VF-06	19.0
			$\begin{aligned} & \text { RCC-108CA2022 } \\ & \text { (With O-ring) } \end{aligned}$	VF-08	24.4

5．2．10 Oil－proof type servomotor connectors（Recommendation 2）

When using the motor and cable in an environment where cutting fluids or lubricants may come in contact a little，use the oil－proof specification connector（plug）shown below for the motor and encoder．

For motor connector

Servomotor model	（1）Cannon plug（Plug unit）		（2）Daiwa Dengyo connector	（3）Daiwa Dengyo flexible conduit	
	1）Hirose，2）Japan Aviation Electronics， 3）DDK		Model	Model	$\begin{aligned} & \text { Min. inner } \\ & \text { diameter } \\ & \text { (guide } \\ & \text { collar) } \end{aligned}$
	Standard	European standard part			
$\begin{aligned} & \text { HAO53NC } \\ & \text { HA13NC } \\ & \text { HA23NC } \\ & \text { HA3NC } \end{aligned}$	1）H／MS3106A18－12S－D（03） 2）JA06A－18－12S－J1 3）MS3106A18－12S（D190）	2）JL04V－6A18－12SE 3） $\mathrm{CE} 05-6 \mathrm{~A} 18-12 \mathrm{SD}-\mathrm{B}$	MSA 12－18 MAA 12－18	FCV－12	12.3
			$\begin{aligned} & \hline \text { MSA 16-18 } \\ & \text { MAA 16-18 } \end{aligned}$	FCV－16	15.8
			$\begin{aligned} & \hline \text { MSA 22-18 } \\ & \text { MAA 22-18 } \end{aligned}$	FCV－22	20.8
HC52 to HC102HC53 to HC103HA50LC to HA150LCHA53LC to HA153LC（HA40NC toHA80NC）（HA43NC toHA83NC）	1）H／MS3106A22－23S－D（03） 2）JA06A－22－23S－J1 3）MS3106A22－23S（D190）	2）JL04V－6A22－23SE 3） $\mathrm{CE} 05-6 \mathrm{~A} 22-23 \mathrm{SD}-\mathrm{B}$	MSA 16－22	FCV－16	15.8
			$\begin{aligned} & \text { MSA 22-22 } \\ & \text { MAA 22-22 } \end{aligned}$	FCV－22	20.8
			MSA 28－22 MAA 28－22	FCV－28	26.4
HC152 to HC452HC203 to HC353HA200LC toHA500LCHA203LC toHA303LC（HA100NC toHA300NC）（HA103NC toHA203NC）	1）H／MS3106A24－10S－D（03） 2）JA06A－24－10S－J1 3）MS3108B24－10S（D190）	2）JL04V－6A24－10SE 3） $\mathrm{CE} 05-6 \mathrm{~A} 24-10 \mathrm{SD}-\mathrm{B}$	MSA 16－24 MAA 16－24	FCV－16	15.8
			$\begin{aligned} & \hline \text { MSA 22-24 } \\ & \text { MAA 22-24 } \end{aligned}$	FCV－22	20.8
			MSA 28－24 MAA 28－24	FCV－28	26.4

For brake cable

| HC202B to HC902B | | | |
| :--- | :--- | :--- | :--- | :--- |
| HC203B to HC703B | HMS 3106A10SL－4S（03）（Hirose） | | |
| （HA40NCB to | JA06A－10SL－4S－J1（Japan Aviation Electronics） | MSA 10－10 | |
| HA300NCB）
 （HA053NCB to
 HA203NCB） | MS3106A10SL－4S（D190）（DDK） | FCV－10 | |

For detector cable

OSE104■	HMS 3106A22－14S－N（03）（Hirose） JA06A－22－14S－JI（Japan Aviation Electronics） MS3106A22－14S（D190）（DDK）	MSA 16－22 MAA 16－22	MPF－15	14.2
OSA104口		MSA 22－22		
OSE105口		MAA 22－22	MPF－19	17.2
OSA105口		MSA 28－22 MAA 28－22	MPF－25	23.5

5.2.11 Cable clamp

Mount the grounding plate near the servo drive unit, peel the cable sheath, and press the peeled shield cable to the grounding plate using the cable clamp. If the cable is thin, clamp several cables.

The grounding plate D and cable clamps A and B can be supplied by Mitsubishi.

- The grounding wire should be connected between the grounding plate and the cabinet grounding plate.
- Two metal fittings A can be used.
* Screw hole for wiring to cabinet grounding plate

Cable clamp outline drawing

5.2.12 Spindle control circuit cable list

No.	Application	Drive unit side connection	Cable name	Connected device Parts name Maker		Applicable cable finished state	Connected device Parts name Maker	
(1)	Motor speed detection signal Motor temperature switch signal	CN5	CNP5 cable	Spindle drive unit (Shell) $10320-52 F 0-008$ (Plug) $10120-3000 \mathrm{VE}$		Twisted pair batch shield cable 0.2SQ Maximum diameter 11 mm	Motor (connector) Motor (lead wire terminal) (Connector) AMP-350720-1 (Pin) AMP-350689-1	
(2)	Magnetic sensor Orientation detection signal	CN6	CNP6M cable	Spindle drive unit (Shell) $10320-52 F 0-008$ (Plug) $10120-3000 \mathrm{VE}$ Sumitomo 3M		Twisted pair batch shield cable 0.2SQ Maximum diameter 11 mm	Magnetic sensor drive unit TRC116-12A0-7F 10.5 Tajimi Musen	
(3)	Encoder Orientation detection signal	CN6	CNP6A cable	Spindle drive unit (Shell) 10320-52F0-008 (Plug) 10120-3000VE Sumitomo 3M		Twisted pair batch shield cable 0.2SQ	Encoder (RFH-1024-)	
(4)	C-axis encoder C-axis detection signal (OSE90K+1024)	CN7	CNP7A cable	Spindle drive unit (Shell) 13020-52F0-008 (Plug) 10120-3000VE Sumitomo 3M		Twisted pair batch shield cable 0.2SQ	Encoder $($ OSE90K+1024) MS3106A20-29S DDK	
(5)	C-axis built-in encoder C-axis detection signal (MBE90K)	CN7	CNP7B cable	Spindle drive unit (Shell) 10320-52F0-008 (Plug) $10120-3000 \mathrm{VE}$ Sumitomo 3M		Twisted pair batch shield cable 0.2SQ Maximum diameter 11 mm	Encoder (MBE90K) (Housing) $69176-020$ (Pin) $48235-000$ DuPont	
(6)	C-axis built-in encoder C-axis detection signal (MHE90K)	CN7	CNP7H cable	Spindle drive unit (Shell) 10320-52F0-008 (Plug) $10120-3000 \mathrm{VE}$ Sumitomo 3M		Twisted pair batch shield cable 0.2SQ	Encoder (MHE90K) (Housing) JAC-15P (Pin) J-SP1140 Japan Solderless	
(7)	C-axis encoder C-axis detection signal + orientation detection signal (OSE90K+1024)	CN6 + CN7	CNP67A cable			Twisted pair batch shield cable 0.2SQ Maximum diameter 11 mm	Encoder (OSE90K+1024) MS3106A20-29S DDK	

No.	Application	Drive unit side connection connector	Cable name	Connected device		Applicable cable finished state	Connected device	
				Parts name			Parts name	
				Maker			Maker	
(8)	C-axis encoder C-axis detection signal + NC speed indication signal (OSE90K+1024)	$\begin{aligned} & \text { CN7 + } \\ & \text { CES11 } \end{aligned}$	CNP71A cable	Spindle drive unit		Twisted pair batch shield cable0.2 SQ	Encoder (OSE90K+1024)	
				(Shell) 10320-52F0-008 (Plug) 10120-3000VE			MS3106A20-29S	
				Sumitomo 3M				
				CNC			DDK	
				(Connector) CDA-15P (Contact) CD-PC-111 (Case) HDA-CTF				
				Hirose				
(9)	C-axis built-in encoder C-axis detection signal + NC speed indication signal (MBE90K)	$\begin{aligned} & \text { CN7 + } \\ & \text { CES11 } \end{aligned}$	CNP71B cable	Spindle drive unit		Twisted pair batch shield cable 0.2SQ Maximum diameter 11 mm	Encoder (MBE90K)	
				(Shell) 10320-52F0-008 (Plug) 10120-3000VE			$\begin{aligned} & \text { (Housing) } \\ & 69176-020 \\ & \text { (Pin) } \\ & 48235-000 \end{aligned}$	
				Sumitomo 3M				
							$\begin{gathered} \text { DuPont } \\ 00 \end{gathered}$	
				$\begin{aligned} & \text { (Connector) } \\ & \text { CDA-15P } \\ & \text { (Contact) } \\ & \text { CD-PC-111 } \\ & \text { (Case) HDA-CTF } \\ & \hline \end{aligned}$				
				Hirose				
$\begin{gathered} 10 \\ (10 \end{gathered}$	C-axis built-in encoder C-axis detection signal + NC speed indication signal (MHE90K)	$\begin{aligned} & \text { CN7 + } \\ & \text { CES11 } \end{aligned}$	CNP71H cable	Spindle drive unit		Twisted pair batch shield cable 0.2SQ Maximum diameter 7 mm	Encoder (MHE90K)	
				(Shell) 10320-52F0-008 (Plug) $10120-3000 \mathrm{VE}$			$\begin{aligned} & \text { (Housing) } \\ & \text { JAC-15P } \\ & \text { (Pin) } \\ & \text { J-SP1140 } \end{aligned}$	
				Sumitomo 3M			Japan Solderless	
				CNC (Connector) CDA-15P (Contact) CD-PC-111 (Case) HDA-CTF			$\begin{aligned} & \text { (Housing) } \\ & \text { JAC-15P } \\ & \text { (Pin) } \\ & \text { J-SP1140 } \end{aligned}$	
				Hirose			Japan Solderless	
$\begin{gathered} (11 \\) \end{gathered}$	C-axis built-inencoderMotor speeddetection signal+ motortemperatureswitch signal(MHE90K)	CN5	CNP5H cable	Spindle drive unit		Twisted pair batch shield cable 0.2SQ Maximum diameter 7 mm	Encoder (MHE90K)	
				(Shell) 10320-52F0-008 (Plug) 10120-3000VE			$\begin{aligned} & \text { (Housing) } \\ & \text { JEC-9P } \\ & \text { (Pin) } \\ & \text { J-SP1140 } \\ & \hline \end{aligned}$	
				Sumitomo 3M			Japan Solderless	
$\begin{gathered} 12 \\ (12 \end{gathered}$	Speed detection signal	CN8	CNP8 cable	Spindle drive unit			NC control unit (QX522 card CES11)	
				$\begin{aligned} & \text { (Shell) } \\ & \text { 10320-52F0-008 } \\ & \text { (Plug) } \\ & 10120-3000 \mathrm{VE} \end{aligned}$			(Connector) CDA-15P (Contact) CD-PC-111 (Case) HDA-CTF	
				Sumitomo 3M			Hirose	

(Note 1) The connector shell on the spindle drive unit is the 3 M "10320-52F0-008", but this is a shell with a one-touch locking mechanism that does not require screw locking.
When ordering the cables from Mitsubishi, the shell "10320-52F0-008" with this one-touch locking mechanism will be used.
However, if the cable is to be manufactured by the user, the shell "10320-52A0-008" (3M) with the screw lock mechanism can be used instead of the above shell.
(Note 2) Each cable length must be 30 m or less.
The cable for the C-axis built-in encoder MHE90K must be 10 m or less.
CNP5 cable

Part No.	Part name	Abbr.	Model	Qty/type				
000				E-type	2-type			
101	Connector (shell)	CON	10320-52F0-008	1	1			
102	Connector (plug)	CON	10120-3000VE	1	1			
103								
104	Cable	SEN	F-DPEVSB TS-91026 (BANDO ELECTRIC WIRE)	1	1			
105	Connector (housing)	CON	350720-1		1			
106	Connector (pin)	CON	350689-1		8			

Cable name
CNP6M-OD-D Connector type
CNP6M cable

| Part No. | Part name | Abbr. | Model | Qty/type | | | | |
| :---: | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | :--- |
| 000 | | | | E-type | 2-type | | | |
| 101 | Connector (shell) | CON | $10320-52 F 0-008$ | 1 | 1 | | | |
| 102 | Connector (plug) | CON | $10120-3000$ VE | 1 | 1 | | | |
| 103 | | | | | | | | |
| 104 | Cable | SEN | F-DPEVSB TS-91026
 (BANDO ELECTRIC WIRE) | 1 | 1 | | | |
| 105 | Connector | CON | TRC116-12A10-7F10.5 | | 1 | | | |
| 106 | | | | | | | | |
| 107 | | | | | | | | |
| 108 | | | | | | | | |

(CNP6A cable

Part No.	Part name	Abbr.	Model						Qty/type			
000				E -type	2-type	3-type						
101	Connector (shell)	CON	10320-52F0-008	1	1	1						
102	Connector (plug)	CON	10120-3000VE	1	1		1					
103												
104	Cable	SEN	F-DPEVSB TS-91026 (BANDO ELECTRIC WIRE)	1	1	1						
105	Cannon connector (angle)	CON	MS3108B20-29S			1						
106	Connector clamp	CON	MS3057-12A			1	1					
107												
108	Cannon connector (Straight)	CON	MS3106B20-29S		1							

(CNP7A cable

Part No.	Part name	Abbr.	Model						Qty/type			
000				E-type	2-type	3-type						
101	Connector (shell)	CON	10320-52F0-008	1	1	1						
102	Connector (plug)	CON	10120-3000VE	1	1	1						
103												
104	Cable	SEN	F-DPEVSB TS-91026 (BANDO ELECTRIC WIRE)	1	1	1						
105	Cannon connector (angle)	CON	MS3108B20-29S			1						
106	Connector clamp	CON	MS3057-12A		1	1						
107												
108	Cannon Connector (Straight)	CON	MS3106B20-29S		1							

(CNP7B cable

Part No.	Part name	Abbr.	Model					
000				Qty/type				
101	Connector (shell)	CON	10320-52F0-008	E-type	2-type			
102	Connector (plug)	CON	10120-3000VE	1	1			
103				1	1			
104	Cable	SEN	F-DPEVSB TS-91026 (BANDO ELECTRIC WIRE)		1	1		
105	Connector (housing)	CON	69176-D20					
106	Connector (pin)	CON	$48235-000$		1			
107					13			
108								

CNP7H cable

Part No.	Part name	Abbr.	Model	Qty/type				
000				E-type	2-type			
101	Connector (shell)	CON	10320-52F0-008	1	1			
102	Connector (plug)	CON	10120-3000VE	1	1			
103								
104	Cable	SEN		1	1			
105	Connector (housing)	CON	JAC-15P		1			
106	Connector (pin)	CON	J-SP1140		7			
107								
108								

(7) NP67A cable

Part No.	Part name	Abbr.	Model	Qty/type				
000				E-type	2-type	3-type		
101	Connector (shell)	CON	10320-52F0-008	2	2	2		
102	Connector (plug)	CON	10120-3000VE	2	2	2		
103								
104	Cable	SEN	F-DPEVSB TS-91026 (BANDO ELECTRIC WIRE)		1	1	1	
105	Cannon connector (anale)	CON	MS3108B20-29S			1		
106	Connector clamp	CON	MS3057-12A		1	1		
107								
108	Cannon connector (Straight)	CON	MS3106B20-29S		1			

(8) NP71A cable

(8) NP71A cable

| Part No. | Part name | Abbr. | Model | Qty/type | | | | |
| :---: | :--- | :--- | :--- | ---: | ---: | ---: | ---: | :--- | :--- |
| 000 | | | | E-type | 2-type | 3-type | | |
| 101 | Connector (shell) | CON | $10320-52 F 0-008$ | 1 | 1 | 1 | | |
| 102 | Connector (plug) | CON | $10120-3000 V E$ | 1 | 1 | 1 | | |
| 103 | Cannon connector
 (Straight) | CON | MS3106B20-29S | | 1 | | | |
| 104 | Cable | SEN | F-DPEVSB TS-91026
 (BANDO ELECTRIC WIRE) | 2 | 2 | | | |
| 105 | Cannon connector
 (angle) | CON | MS3108B20-29S | | | 1 | | |
| 106 | Connector clamp | CON | MS3057-12A | | 1 | 1 | | |
| 107 | Connector | CON | CDA-15P | 1 | 1 | 1 | | |
| 108 | Contact | CON | CD-PC-111 | 6 | 6 | 6 | | |
| 109 | Case | CON | HDA-CTF | 1 | 1 | 1 | | |

(9) NP71B cable

Part No.	Part name	Abbr.	Model					
000				Qty/type				
101	Connector (shell)	CON	10320-52F0-008	E-type	2-type			
102	Connector (plug)	CON	$10120-3000 V E$	1	1			
103				1	1			
104	Cable	SEN	F-DPEVSB TS-91026 (BANDO ELECTRIC WIRE)	2	2			
105	Connector (housing)	CON	$69176-020$					
106	Connector (pin)	CON	$48235-000$		1			
107	Connector	CON	CDA-15P		19			
108	Contact	CON	CD-PC-111	1	1			
109	Case	CON	HDA-CTF	6	6			

(10)NP71H cable

Part No.	Part name	Abbr.	Model			Qty/type		
000				E-type	2-type			
101	Connector (shell)	CON	10320-52F0-008	1	1			
102	Connector (plug)	CON	10120-3000VE	1	1			
103								
104	Cable	SEN	F-DPEVSB TS-91026 (BANDO ELECTRIC WIRE)	2	2			
105	Connector (housing)	CON	JAC-15P		2			
106	Connector (pin)	CON	J-SP1140		13			
107	Connector	CON	CDA-15P	1	1			
108	Contact	CON	CD-PC-111	6	6			
109	Case	CON	HDA-CTF	1	1			

($\mathrm{C} \mathrm{N} \mathrm{7} \mathrm{)} \mathrm{Drive} \mathrm{unit} \mathrm{connector}(\mathrm{C} \mathrm{N} \mathrm{-} 2$) Detector connector

(Note) When using the 2-axis spindle, the required quantity of part (101) to 104 on the left will be two.
Cable name Cable name
cnP8
Connection connector No.

5.2.13 Cable assembly procedure (Excluding SH21 cable)

(1) Non-shield shell assembly procedure I

One-touch locking type

(a)		Peel the outer sheath so that the shield wires are exposed.
(b)		Wrap copper tape or vinyl tape around part of the shield wire section.
(c)		Fold the shield wire over the wrapped copper tape or vinyl tape.
		Cut off any excess sheath.
(e)		After connecting the connector and cable, mount the cable clamp approx. 1 to 2 mm from the cable end, and tighten the screw until the cable clamp screw section face contacts closely. (Note) Adjust the No. of copper tape windings in step (b) so that the shield wire and clamp contact without looseness and so that the clamp's screw section face is closely contacted.

Store a connector and latch at the respective
positions on one end of the shell.
(The male of the shell is same shape as female's, so
store on either side.)
(Note) Make sure that the cable does not rise up or
exceed the shell's inner wall to prevent
breakage of the cable.
(2) Non-shield shell assembly procedure II

Jack screw (screw locking) type

| (a) | Peel the outer sheath so that the shield wires are
 exposed. |
| :--- | :--- | :--- |
| (b) | Wrap copper tape or vinyl tape around part of the
 shield wire section. |
| vinyl tape. shield wire over the wrapped copper tape or | |

Store a connector and jack screw at the respective
positions on one end of the shell.
(The male of the shell is same shape as female's, so
store on either side.)
(Note) Make sure that the cable does not rise up or
exceed the shell's inner wall to prevent
breakage of the cable.
6. Outline Drawing I-58
6.1 Panel installation structure I-58
6.2 Power supply unit I-59
6.3 1-axis servo drive unit/2-axis servo drive unit/spindle servo drive unit I-60
6.4 Battery unit I-61
6.5 AC reactor I-62
6.6 Dynamic brake unit I-63
6.7 Contactor I-63
6.8 Circuit Breaker (CB). I-63

6. Outline Drawing

6.1 Panel installation structure

(1) Unit outline
[Power supply unit]

(Note) The type A0 unit noted in section "2.Drive Section System Configuration(2) and (3)" do not have the fin and fan section.

(2) Panel installation hole work drawing

Prepare a square hole to match the unit width.
(Note 1) The A0 type unit described in section "2. Drive Section System Configuration (2) and (3)" does not require to make a square hole.
(Note 2) Install packing around the square hole to provide a seal.

6.2 Power supply unit

*1 The position of the CV-37 to 185 CN4 and CN9 is approx. 39mm lower than the MDS-B-CV Series. No changes have been made to the CV-220 to 370 .
*2 The position of the ground $\xlongequal{\theta}$) has been moved from the terminal block to the unit installation base.

The fin section includes 15 mm required for the wind passage space.

6.3 1-axis servo drive unit/2-axis servo drive unit/spindle servo drive unit

The fin section includes 15 mm required for the wind passage.

The fin section includes 12 mm required for the wind passage space.
C1-V1-110/150
SP-260/300

6.4 Battery unit

6.5 AC reactor

AC reactor outline drawing

(1) For 30 kW or less

Terminal cover

ACL model	Corresponding power supply unit	Ys	Y	Weight	Screw
B-AL-7.5K	C1-CV-37, C1-CV-55, C1-CV-75	82	130	3.6 kg	M5
B-AL-11K	C1-CV-110	75	130	3.0 kg	
B-AL-18.5K	C1-CV-150, C1-CV-185	105	140	5.2 kg	M6
B-AL-30K	C1-CV-220, C1-CV-260, C1-CV-300	110	150	6.0 kg	

AC reactor outline

 drawing(2) 37 kW

Terminal cover

ACL model	Corresponding power supply unit	Ys	Y	Weight
B-AL-37K	C1-CV-370	110	150	10.0 kg

(Note 1) This AC reactor has a PE (protection grounding) terminal for electric shock prevention and an FG (function grounding) terminal for noise measures. Observe the following cautions for treating each terminal.
(1) PE terminal (©)
(a) When AC reactor installation side is PE Install the AC reactor unit with screws (bolts) in all four installation holes. Always insert a loosening-prevention washer and spring washer in the screw (bolt) used for the Θ mark installation hole, and tighten the screw.
(b) When AC reactor installation side is not PE Install the AC reactor unit with screws (bolts) in all four installation holes.
Always insert a loosening-prevention washer and spring washer and tighten the screw together with the grounding wire (PE) crimp terminal at the ${ }^{-}$mark installation hole.
The grounding wire used is the same type as the grounding wire connected to the power supply unit.
(2) FG terminal (FG)

Screw the function grounding wire crimp terminal at the terminal marked as "FG" on the top of the AC reactor (terminal block).
(With this treatment, the built-in filter's grounding will be directly connected to the grounding, and the noise withstand level will be improved.)

* Function grounding wire: This is a grounding wire not used for protection grounding. Thus, do not use a green/yellow spiral wire.
(Note 2) The dimensions of the terminal cover are as shown on the right. When separately manufacturing a cover, refer to the dimensions on the right.

6.6 Dynamic brake unit

6.7 Contactor

Refer to the section "8.6 Selection of AC reactor, contactor and CB".

6.8 Circuit Breaker (CB)

Refer to the section "8.6 Selection of AC reactor, contactor and CB".
7. Heating Value I-66

7. Heating Value

(1) Power supply unit

Model	Total heat- ing value (W)	Inside unit (W)	
CV-37	55	Outside unit (W)	
$C V-55$	65	21	34
$C V-75$	80	25	42
$C V-110$	125	26	95
$C V-150$	155	29	126
$C V-185$	195	33	162
$C V-220$	210	35	175
$C V-260$	260	40	220
$C V-300$	320	46	274
$C V-370$	400	54	346

(2) Spindle drive unit				(3) 1-axis servo drive unit (4) 2-axis servo drive unit							
Model	Total heating value (W	Inside unit (W)	$\begin{aligned} & \text { Cutside } \\ & \text { nnit (W) } \end{aligned}$	Model	Total heating value (W	Inside unit (W)	$\begin{aligned} & \text { Outside } \\ & \text { unit (W) } \end{aligned}$	Model	Total heating value (W)	$\begin{aligned} & \text { Inside } \\ & \text { unit (W) } \end{aligned}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Outside } \\ \text { unit (W) } \end{array} \\ \hline \end{array}$
SP-04	30	30	0	V1-01	21	21	0	V2-0101	38	38	0
SP-075	40	40	0	V1-03	27	27	0	$\mathrm{V} 2-0301$	41	41	0
SP-15	49	49	0	V1-05	37	37	0	V2-0303	43	43	0
SP- 22	69	26	42	$\mathrm{V} 1-10$	53	53	0	V2-0501	46	46	0
SP-37	79	28	51	V1-20	91	25	66	V2-0503	52	52	0
SP- 55	108	31	76	V1-35	132	30	102	V2-0505	62	62	0
SP- 75	137	35	102	$\mathrm{V} 1-45$	185	37	148	V2-1005	78	78	0
SP-110	181	41	140	$\mathrm{V} 1-70$	284	50	234	V -1010	96	96	0
SP-150	235	48	187	V1-90	331	56	275	V2-2010	155	37	117
SP-185	342	62	280	V1-110	465	74	392	V2-2020	178	41	137
SP-220	366	65	301	$\mathrm{V} 1-150$	641	96	545	$\mathrm{V} 2-3510$	190	42	148
SP-260	483	80	403	V1-45S	158	34	124	V -3520	213	45	168
SP-300	620	98	522	V1-70s	189	38	151	V2-3535	260	51	209
SP-150S	235	48	140					V2-4520	266	52	214
								$\mathrm{V} 2-4535$	307	57	249
								$\mathrm{V} 2-4545$	359	64	295
								$\mathrm{V} 2-7035$	406	70	336
								$\mathrm{V} 2-7045$	459	77	382
								$\mathrm{V} 2-7070$	558	90	468
								V2-3510S	190	44	146
								V2-3520S	213	48	165
								V2-7070s	365	65	300

(Note 1) The heating value for the spindle drive unit is for during continuous rated output and for the servo drive unit is for during the rated output when operating in the high-gain mode.
If the servo drive unit is operated in the standard mode, the heating value will be less than the B Series heating value. However, the new design is not supposed to operate in the standard mode, so the data has been omitted.
(Note 2) The total heating value for the power supply includes the AC reactor heating value.
(Note 3) For the total heating value for the unit, add the heating value for the corresponding unit above that is mounted on the actual machine.
Example) When mounted unit is CV-185, SP-110, V1-35, V2-2020
Total unit heating value $(\mathrm{W})=195+181+132+178=686(\mathrm{~W})$
(Note 4) When designing the box for the fully closed installation, consider the actual load ratio as the heating value inside the servo drive unit, and use the following equation.

Heating value inside servo drive unit (considering load ratio) $=$ heating value inside unit obtained with the above table $\times 0.5$
(However, this excludes the power supply unit and spindle drive unit.)
If it is clear that the load ratio is larger than 0.5 , substitute that load ratio for " $\times 0.5$ " in the above equation.
Example If the mounted servo drive unit is V1-35:
Heating value inside unit (during rated output)

$$
\begin{aligned}
& =30(\mathrm{~W}) \\
& \text { Thus, }
\end{aligned}
$$

Heating value inside unit (considering load ratio)

$$
=30 \times 0.5=15(\mathrm{~W})
$$

(Note 5) Due to the structure, heat will tend to accumulate that the top of each unit. Thus, install a fan in the distribution box to mix the heat at the top of each unit.

8. Selection of Capacity I-68
8.1 Selection of the power supply unit capacity. I-68
8.1.1 Selection with rated capacity (continuous rated capacity) I-68
8.1.2 Selection with maximum momentary rated capacity I-70
8.1.3 Selection data I-70
8.1.4 Selection example I-71
8.2 Selection of leakage breaker I-72
8.3 Noise filter I-73
8.4 Selection of power supply capacity I-75
8.5 Selection of wire size I-76
8.6 Selection of $A C$ reactor, contactor and $C B$ I-81

8. Selection of Capacity

8.1 Selection of the power supply unit capacity

In addition to "selection conditions following the rated capacity (continuous rated capacity)" with the conventional method, select the power supply unit so that "selection conditions under the maximum momentary rated capacity" are simultaneously satisfied.

Conventionally, the power supply unit capacity was selected based on the total rated capacity of the motors connected to the power supply unit.
However, as the machines become faster and the increased torque occur during acceleration/ deceleration following that the acceleration/deceleration time constant become shorter, stricter working conditions have been applied to the acceleration/deceleration for the power supply unit. Thus, selection conditions have been set for the maximum momentary rated capacity to prevent use exceeding the momentary power processing capacity.

8.1.1 Selection with rated capacity (continuous rated capacity)

(Note) In this section, "continuous rated capacity" will be indicated as "rated capacity".
(1) When using 1-axis servomotor

Power supply unit rated capacity
$>\Sigma$ (Spindle motor output) + (Servomotor output)
(2) When using 2 or more axes servomotor

Power supply unit rated capacity
$>\Sigma$ (Spindle motor output) $+0.7 \times \Sigma$ (Servomotor output)
(Note 1) Σ (Spindle motor output) is the total of the spindle motor's short time rated output (kW).
Σ (Servomotor output) is the total of the servomotor rated output (kW).
Note that, the motor output and drive unit capacity will not always match (for example, servo drive unit for servomotor $\mathrm{HC} 203=2 \mathrm{~kW}$ is $\mathrm{V} 1-35=3.5 \mathrm{~kW}$). Thus, substitute the motor rated output instead of the drive unit capacity in the "Spindle motor output" and "Servomotor output" items in equations 1) and 2) above.

- In some cases, the spindle motor is used with different output for acceleration/deceleration and constant operation. In this case, substitute the larger output in the "Spindle motor output" item.
- When using in conditions limiting the spindle motor output, substitute the output obtained by multiplying the limit rate in the "Spindle motor output" item.
(Note 2) The power supply unit capacity is selected the minimum line up capacity that establishes equations 1) and 2).
Example 1) If the value obtained on the right side of equations 1) and 2) is 10 kW , the power supply unit capacity will be 11 kW (CV/CVE-110).
Example 2) If the value obtained on the right side of equations 1) and 2) is 23 kW , the power supply unit capacity will be 26 kW (CV/CVE-260).
(Note 3) If the value obtained on the right sides of equations 1) and 2) is suppressed to less than 0.5 kW more than line up CVE unit capacity, he excessive amount can be ignored when selecting the CVE unit capacity.
For capacities exceeding 22 kW , if the excessive amount is 1 kW or less, the amount can be ignored when selecting the CVE unit capacity.
Example 1) If the value obtained on the right sides of equations 1) and 2) is 15.5 kW , the power supply unit capacity will be 15 kW .
Example 2) If the value obtained on the right sides of equations 1) and 2) is 15.6 kW , the power supply unit capacity will be 18.5 kW .
Example 3) If the value obtained on the right sides of equations 1) and 2) is 22.9 kW , the power supply unit capacity will be 22 kW .
Example 4) If the value obtained on the right sides of equations 1) and 2) is 23.1 kW , the power supply unit capacity will be 26 kW .
(Note 4) If the value obtained on the right sides of equations 1) and 2) is larger than 38 kW , there is no corresponding power supply unit. Thus,
(1) When Σ (Spindle motor output) < 38kW

Power supply unit (No. 1) rated capacity $>\Sigma$ (Spindle motor output)

Power supply unit (No. 2) rated capacity $>\mathrm{k} \times \Sigma$ (Servomotor output)

* However, select a power supply unit so that coefficient k is $\mathrm{k}=1$ when the servomotor has one axis, and $\mathrm{k}=0.7$ when the servomotor has two or more axes.
(2) When Σ (Spindle motor output) $>38 \mathrm{~kW}$

Power supply unit (No.1) rated capacity $>\Sigma$ (Spindle motor output 1)

* Where, Σ (Spindle motor output 1) is the total of the spindle motor output that is 38 kW or less.
Power supply unit (No. 2) rated capacity
$>\Sigma$ (Spindle motor output 2) $+\mathrm{K} \times \Sigma$ (Servomotor output)
* Where, Σ (Spindle motor output 2) is the total of the spindle motor output that is not added to the power supply unit (No. 1).

However, select a power supply unit so that coefficient k is $k=1$ when the servomotor has one axis, and $\mathrm{k}=0.7$ when the servomotor has two or more axes.
(3) If the value obtained on the right sides of equations 1) and 2) is larger than 76 kW , three or more power supply units will be required. However, even in this case, the same selection method as (2) is used.
(Note 5) When the servomotor has two or more axes, the value is calculated as $k=0.7$. However, if the capacity of the power supply unit determined by the calculation is smaller than the largest output of the servomotor being used, select a power supply unit that is the same rated capacity as the largest servomotor output.
(Example 1) When using the power supply unit with two servomotors (servomotor output = 9.0 kW and servomotor output $=1.0 \mathrm{~kW}$), if the equation 2) is used for calculation, the power supply unit only needs rated capacity of 7 kW or more (CV/CVE-75 or above). However, in this case, a power supply unit with a rated capacity of 9.0 kW or more is required.

8.1.2 Selection with maximum momentary rated capacity

Select the capacity so that the total value of the two outputs "total sum of maximum momentary output during spindle motor acceleration" and "total sum of maximum momentary output during acceleration of servomotor that is accelerating and decelerating simultaneously" is not more than the maximum momentary rated capacity of the power supply unit.

Maximum momentary rated capacity of power supply unit
$\geq \Sigma$ (Maximum momentary output of spindle motor)
$+\Sigma$ (Maximum momentary output of servomotor accelerating/decelerating simultaneously)

If the total value of the right side exceeds 75 kW , divide the capacity in two power supply units.

Maximum momentary output of spindle motor

Maximum momentary output of spindle motor
$=$ Spindle motor acceleration/deceleration output $\times 1.2$
Spindle motor acceleration/deceleration output means the maximum output (kW) specified in the acceleration/deceleration output characteristics, or the maximum output (kW) of the short-time rated output specified at a time of 30 minutes or less.
If there are no specifications other than the 30 -minute rated output, the 30 -minute rated output will be the spindle motor acceleration/deceleration output.

8.1.3 Selection data

Servomotor rated output, maximum momentary output

Motor	HC52	HC102	HC152	HC202	HC352	HC452	HC702	HC902
Servo drive unit	B-V1-05 C1-V1-05	B-V1-10 C1-V1-10	B-V1-20 C1-V1-20	B-V1-20 C1-V1-20	B-V1-35 C1-V1-35	B-V1-45 C1-V1-45	B-V1-70 C1-V1-70	B-V1-90 C1-V1-90
Rated output (kW)	0.5	1.0	1.5	2.0	3.5	4.5	7.0	9.0
Maximum momentary output (kW)	1.5	2.7	4.5	5.3	7.4	10.6	15	19.5

Motor	HC53	HC103	HC153	HC203	HC353	HC453	HC703
Servo drive unit	B-V1-05 C1-V1-05	B-V1-10 C1-V1-10	B-V1-20 C1-V1-20	B-V1-35 C1-V1-35	B-V1-45 C1-V1-45	B-V1-70 C1-V1-70	B-V1-90 C1-V1-90
Rated output (kW)	0.5	1.0	1.5	2.0	3.5	4.5	7.0
Maximum momentary output (kW)	1.6	3.2	5.4	7.6	10.6	13.7	20.1

(Note 1) The maximum momentary output in this table is reference data for selecting the power supply unit and does not guarantee the maximum output.

Power supply unit rated capacity, maximum momentary rated capacity

B-CVE- C1-CV-	37	55	75	110	150	185	220	260	300	370
Rated capacity (kW)	3.7	5.5	7.5	11	15	18.5	22	26	30	37
Maximum momentary rated capacity (kW)	14	19	21	28	41	42	53	54	55	75

8.1.4 Selection example

(Example 1) Spindle motor: 30-minute rated output $22 \mathrm{~kW} \times 1$ unit Servomotor : HC352 (V1-35) $\times 3$ units The three units are simultaneously accelerated/decelerated.
(1) Selection with rated capacity

$$
22 \mathrm{~kW}+0.7 \times(3.5 \mathrm{~kW} \times 3)=29.35 \mathrm{~kW}
$$

\rightarrow Rated capacity 30kW:

- MDS-B-CVE-300 or more is required.
- MDS-C1-CV-300 or more is required.
(2) Selection with maximum momentary rated capacity
$22 \mathrm{~kW} \times 1.2+7.4 \mathrm{~kW} \times 3=48.6 \mathrm{~kW}$
\rightarrow Maximum momentary rated capacity 53 kW :
- MDS-B-CVE-220 or more is required.
- MDS-C1-CV-220 or more is required.

Power supply units that satisfy conditions (1) and (2):

- Select MDS-B-CVE-300.
- Select MDS-C1-CV-300.
(Example 2) Spindle motor: 30-minute rated output $22 \mathrm{~kW} \times 1$ unit
Servomotor : HC353 (V1-45) $\times 1$ units HC453 (V1-70) $\times 2$ units
.... The three units are simultaneously accelerated/decelerated.
(1) Selection with rated capacity

$$
22 \mathrm{~kW}+0.7 \times(3.5 \mathrm{~kW}+4.5 \mathrm{~kW} \times 2)=30.75 \mathrm{~kW}
$$

\rightarrow Rated capacity 30kW:

- MDS-B-CVE-300 or more is required.
- MDS-C1-CV-300 or more is required.
(2) Selection with maximum momentary rated capacity

$$
22 \mathrm{~kW} \times 1.2+10.6 \mathrm{~kW}+13.7 \mathrm{~kW} \times 2=64.4 \mathrm{~kW}
$$

\rightarrow Maximum momentary rated capacity 75 kW :

- MDS-B-CVE-370 or more is required.
- MDS-C1-CV-370 or more is required.

Power supply units that satisfy conditions (1) and (2):

- Select MDS-B-CVE-370.
- Select MDS-C1-CV-370.

8.2 Selection of leakage breaker

As a PWM-controlled higher harmonic chopper current flows into the AC servo/spindle, the leakage current is higher than a motor operated with commercial power. When installing a leakage breaker as indicated below, make sure to ground both the drive unit and motor.

Machine power distribution box
The commercial frequency element of the leakage current in the MELDAS MDS Series spindle/servo system is approx. 6 mA per spindle and approx. 1 mA per servo axis. However, when selecting the leakage breaker, calculate this as max. 15mA per spindle and max. 2 mA per servo axis in consideration of the motor power cable length, distance from grounding and motor size, etc. If other inverter devices are connected on the same power line, consider the leakage current for these devices when selecting the leakage breaker, and install these at the section shown with (A) above. Note that a leakage breaker (inverter compatible) that removes the higher harmonic elements with a filter and detects only the leakage current in the commercial frequency range (approx. 50 to 60 Hz) must be selected.
Incorrect operations may take place if a breaker that is too sensitive to the higher harmonic elements is used.
(Note) For the MDS Series, there is one spindle and three servo axes. Select a leakage breaker so that when the total leakage current of the devices on the same power line is 7 mA , the following calculation value is within the rated non-operational sensitive current:
$15 \mathrm{~mA}+2 \mathrm{~mA} \times 3+7 \mathrm{~mA}=28 \mathrm{~mA}$
When using a leakage tester to check faults such as malfunctioning of the leakage breaker, select a tester that is not easily affected by the higher harmonics, and set the measurement range to 50 to 60 Hz .
Example) SOUKOU Electric LC-30F
(Note) For safety purposes, always ground the machine with Class C grounding (previously, Class 3).

8.3 Noise filter

(1) Selection

If the radio noise needs to be reduced, select a noise filter from the following table to match the power supply unit model.

MDS-C1-CV	Noise filter model (Tohoku Kinzoku)
37	LF-330
55	LF-340
75	LF-350
110	LF-360
150,185	LF-380K
$220,260,300,370$	Two LF-380K units in parallel

(2) Noise filter installation position

Insert the noise filter at the unit input.

(3) Specifications

Part name	Rated voltage AC DC (V)	Rated current AC DC (V)	Test voltage VAC between case terminals for 1 minute	Insulation resistance (M $\boldsymbol{2})$ $\mathbf{5 0 0 V D C}$	Leakage current (mA) $\mathbf{2 5 0 V} \mathbf{6 0 H z}$	Working temperature Ambient $\left({ }^{\circ} \mathbf{C}\right)$
330	200 V	30 A	1500	>300	<1	-20 to +55
340	200 V	40 A	1500	>300	<1	-20 to +45
350	200 V	50 A	1500	>300	<1	-20 to +45
360	200 V	60 A	1500	>300	<1	-20 to +45
380 K	200 V	80 A	2000	>300	<5	-25 to +55

(4) Filter dimensions

\qquad
LF-300 Series

Model	A	B	C	D	E	F	G	H	I
LF-330	180	170	60	20	120	135	150	35	65
LF-340	180	160	60	30	200	220	240	40	80
LF-350	180	160	60	30	200	220	240	40	80
LF-360	200	180	60	30	300	320	340	50	100

LF-K Series

Model	Terminal plate	A	B	C	D	E	F	G	H	I	J
LF-380K	TE-K22 M6	670	400	560	380	500	170	$9 \times 6.5 \varnothing$	$6.5 \varnothing$	00	00

8.4 Selection of power supply capacity

The actually required power supply capacity is calculated with the following equation based on this power supply capacity reference values.

Power supply capacity $(k V A)$
$=$Right side value (kW) obtained in equations 1) and 2) in section 8.1.1 Power supply unit capacity (kW) selected from section 8.1.1
:---
reference value (kVA)

When using multiple power supply units, the total of the power supply capacity for each power supply unit obtained in equation 3) will be the total power supply capacity.
Example) When the value obtained on the right sides of equations 1) and 2) in section 8.1 .1 is 13.5 kW , the CV-150 power supply unit will be selected, so the power supply capacity reference value ($k V A$) will be 23. Thus, from equation 3), the power supply capacity ($k V A$) will be $(13.5 / 15) \times$ $23=20.7$ (kVA).

The power supply capacity reference values for the power supply unit selected in section 8.1.1 are as follow:

Power regeneration type power supply unit	C1-CV-37	C1-CV-55	C1-CV-75	C1-CV-110	C1-CV-150	C1-CV-185
Power supply capacity reference values (KVA)	7	9	12	17	23	28

Power regeneration type power supply unit	C1-CV-220	C1-CV-260	C1-CV-300	C1-CV-370
Power supply capacity reference values (KVA)	33	37	44	54

8.5 Selection of wire size

(1) Recommended power lead-in wire size

Select the wire size based on the power supply unit capacity as shown below regardless of the motor type.

Power supply unit	C1-CV-37	C1-CV-55	C1-CV-75	C1-CV-110	C1-CV-150	C1-CV-185
Recommended power lead-in wire size	IV3.5SQ or HIV2SQ	IV3.5SQ or HIV3.5SQ	HIV5.5SQ	IV14SQ or HIV14SQ	IV22SQ or HIV14SQ	IV30SQ or HIV22SQ

Power supply unit	C1-CV-220	C1-CV-260	C1-CV-300	C1-CV-370
Recommended power lead-in wire size	IV38SQ or HIV30SQ	IV50SQ or HIV38SQ	IV60SQ or HIV38SQ	HIV50SQ

(2) Recommended wire size for spindle motor output wire

Select the wire size based on the spindle drive unit capacity as shown below regardless of the motor type.

Spindle drive unit capacity	$\mathbf{0 . 4 K}$	$\mathbf{0 . 7 5 K}$	$\mathbf{1 . 5 K}$	$\mathbf{2 . 2 K}$	$\mathbf{3 . 7 K}$	$\mathbf{5 . 5 K}$	$\mathbf{7 . 5 K}$
Recommended wire size for spindle motor output wire	IV2SQ or HIV2SQ	IV2SQ or HIV2SQ	IV3.5SQ or HIV2SQ	IV5.5SQ or HIV35SQ			

Spindle drive unit capacity	$\mathbf{1 1 K}$	$\mathbf{1 5 K}$	$\mathbf{1 8 . 5 K}$	22K	$\mathbf{2 6 K}$	30K
Recommended wire size for spindle motor output wire	IV8SQ or IIV5.5SQ	IV14SQ or HIV14SQ	IV22SQ or HIV14SQ	IV30SQ or HIV22SQ	IV38SQ or HIV30SQ	IV60SQ or HIV38SQ

(3) Recommended wire size for servomotor output wire

Select the wire size based on the servo drive unit capacity as shown below regardless of the motor type.

Servo drive unit capacity	$\mathbf{0 . 1 K}$	$\mathbf{0 . 3 K}$	$\mathbf{0 . 5 K}$	$\mathbf{1 . 0 K}$	$\mathbf{2 . 0 K}$	$\mathbf{3 . 5 K}$	$\mathbf{4 . 5 K}$
Recommended wire size for servomotor output wire	IV1.25SQ or HIV1.25SQ	IV1.25SQ or HIV1.25SQ	IV2SQ or HIV2SQ	IV2SQ or HIV2SQ	IV3.5SQ or HIV2SQ	IV5.55SQ or HIV3.5SQ	IV5.5SQ or HIV3.5SQ

Servo drive unit capacity	7.0K	9.0K	11K	15K
Recommended wire size for servomotor output wire	IV8SQ or HIV5.5SQ	IV8SQ or HIV8SQ	IV14SQ or HIV14SQ	IV30SQ or HIV22SQ

(Note) The wire sizes recommended in (1) to (3) above are selected with conditions of an ambient temperature of $30^{\circ} \mathrm{C}$ and wiring three same tubes.
During actual use, select the wire based on the above reference while considering the ambient temperature, wire material, and wiring state.

(4) Wire size for L11, L21 link bar

Regardless of the power supply unit and drive unit capacity, the wire size must be IV2SQ or more. The wire between CB \longleftrightarrow L11 and L21 must also be IV2SQ or more.
(5) Wire size for L+, L- link bar

[Selection method 1]

To unify the $L+$ and L - link bar size:
To unify the $L+$ and L - link bar size, use the wire sizes given below or a larger wire size for the $L+$ and $L-$ link bar connected to the same power supply unit according to the power supply unit capacity.

Power supply unit	C1-CV-37	C1-CV-55	C1-CV-75	C1-CV-110	C1-CV-150
L+ and L- link bar wire size	IV3.5SQ or HIV2SQ	IV3.5SQ or HIV2SQ	IV5.5SQ or HIV3.5SQ	IV14SQ or HIV8SQ	IV14SQ or HIV14SQ

Power supply unit	C1-CV-185	C1-CV-220	C1-CV-260	C1-CV-300	C1-CV-370
L+ and L- link bar wire size	IV22SQ or HIV14SQ	IV22SQ or HIV14SQ	IV38SQ or HIV22SQ	IV60SQ or HIV38SQ	IV60SQ or HIV50SQ

[Selection method 2]

To suppress the $L+$ and L - link bar size to the minimum required for each unit:
To suppress the $L+$ and L - link bar size to the minimum required for each unit, select the wire size based on the current value that actually flows to the link bar.
The following drawing shows an example of a spindle and 3 -axis servo system. The same selection method is used for other systems.

(a) If the current that flows through the $L+, L-$ bus bars of each drive unit is I 1 to I 4 , the current that flows through each link bar (Bar 1 to Bar 3) will be as follows:

$$
\begin{align*}
& I(\text { Bar 1) }=11+12 \\
& I(\text { Bar 2) }=11+12+13 \\
& I(\text { Bar 3) }=11+12+13+14
\end{align*}
$$

Thus, the wire for each $L+$, $L-$ link bar should tolerate the above current as a minimum.
(b) The I1 to I4 values are actually obtained with the following equation:

$$
(I 1 \text { to } 14)=\text { Motor output current } \times 1.1
$$

However, the motor output current in equation 5) is obtained with the following.
(i) Spindle motor

Substitute the following according to the spindle drive unit capacity :

Spindle drive unit capacity	$\mathbf{0 . 4 K}$	0.75 K	$\mathbf{1 . 5 K}$	$\mathbf{2 . 2 K}$	$\mathbf{3 . 7 K}$	$\mathbf{5 5 K}$	$\mathbf{7 . 5 K}$	$\mathbf{1 1 K}$	$\mathbf{1 5 K}$	$\mathbf{1 8 . 5 K}$	$\mathbf{2 2 K}$	$\mathbf{2 6 K}$	$\mathbf{3 0 K}$
Motor output current (A)	4	6	10	17	25	30	40	60	74	94	103	127	165

(ii) Servomotor

Substitute the following according to the servomotor model:

Motor model	HC52	HC102	HC152	HC202	HC352	HC452	HC702	HC902
Motor output current (A)	3.94	7.4	11.1	15.4	22.9	40.4	46.2	55.9

Motor model	HC53	HC103	HC153	HC203	HC353	HC453	HC703
Motor output current (A)	5.8	9.8	15.9	22.4	33.3	57.3	69.2

Motor model	HA053 HA13	HA23	HA33	HA40	HA43	HA80	HA83	HA100	HA103	HA200	HA203	HA300
HA303												
Motor output current (A)	1.4	3.0	3.0	3.6	5.0	6.6	8.8	14.0	19.6	22.0	34.5	37.0

Motor model	HA700	HA703	HA900	HA50L	HA100L	HA150L	HA200L	HA300L	HA500	HA-LH 11K2	HA-LH 15K2
Motor output current (A)	49.0	68	56.0	4.0	8.0	11.5	18.2	25.0	44.0	84.0	100.0

(c) Based on the I1 to I4 values obtained with equation 5), obtain I (Bar 1) to I (Bar 3) values with equation 4). Match the obtained value with the values given below, and select the IV wire size.

Wire size	Tolerable current (A)	
	IV wire (60 $\mathbf{~ C)}$	HIV wire (75 ${ }^{\circ} \mathbf{C}$)
2 SQ	27	33
3.5 SQ	37	45
5.5 SQ	49	60
8SQ	61	74
14SQ	88	107
$22 S Q$	115	140
38 SQ	162	198
60 SQ	217	265

(Ambient temperature $30^{\circ} \mathrm{C}$ or less)
(d) A selection example is shown below.

Drive unit	Motor	Motor output current
C1-SP-75	SJ-7.5A	Substitute 40A
C1-V1-20	HA100	Substitute 14A
C1-V2-1010	HA80 $\times 2$	Substitute 6.6A $\times 2$

* The power supply unit capacity is as follows according to equation 2) in section 8.1.1:

Power supply unit capacity >
$7.5+0.7 \times(2+1+1)=10.3 \rightarrow 11(\mathrm{~kW})$.
Thus, select CV-110.
For the above drive system, the following applies:

$$
\left\{\begin{array}{l}
I 1=6.6 \mathrm{~A} \times 1.1=7.3 \mathrm{~A} \\
\mathrm{I} 2=6.6 \mathrm{~A} \times 1.1=7.3 \mathrm{~A} \\
\mathrm{I} 3=14 \mathrm{~A} \times 1.1=15.4 \mathrm{~A} \\
\mathrm{I} 4=40 \mathrm{~A} \times 1.1=44.0 \mathrm{~A}
\end{array}\right.
$$

Thus,

$$
\left\{\begin{array}{l}
I(\text { Bar1 })=I 1+I 2=14.6 \mathrm{~A} \\
\mathrm{I}(\text { Bar2 })=I 1+\mathrm{I} 2+I 3=30.0 \mathrm{~A} \\
\mathrm{I}(\text { Bar3 })=I 1+\mathrm{I} 2+\mathrm{I} 3+14=74.0 \mathrm{~A}
\end{array}\right.
$$

Therefore, the following is selected according to the table in (c):
$\left\{\begin{array}{l}\text { Bar1 IV2SQ } \\ \text { Bar2 IV3.5SQ } \\ \text { Bar3 IV14SQ }\end{array}\right.$
(6) Drive unit connection screw size

The screw size for each unit is as follows.

	Power supply unit				Spindle drive unit				Servo drive unit											
							xis				xis									
Capacity (Model)	To 75	110	$\begin{gathered} 150 \text { to } \\ 185 \end{gathered}$	$\begin{gathered} 220 \text { to } \\ 370 \end{gathered}$					To 37	$\begin{gathered} \hline 55 \text { to } \\ 110 \\ 150 \mathrm{~S} \end{gathered}$	$\begin{array}{\|c} \hline 150 \text { to } \\ 185 \end{array}$	$\begin{array}{\|c} 220 \text { to } \\ 300 \end{array}$	$\begin{gathered} \hline \text { To } 35 \\ 45 \mathrm{~S} \end{gathered}$	$\begin{gathered} 45 \\ 70 \mathrm{~S} \end{gathered}$	$\begin{gathered} 70 \text { to } \\ 90 \end{gathered}$	$\begin{gathered} \hline 110 \text { to } \\ 150 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { To } \\ 2020 \\ 3510 \mathrm{~S} \\ 3520 \mathrm{~S} \end{array}$	$\begin{gathered} \hline 3510 \\ \text { to } \\ 4535 \\ 7070 \mathrm{~S} \end{gathered}$	$\begin{gathered} 4545 \\ \text { to } \\ 7045 \end{gathered}$	7070
Capacity (kW)	To 7.5	11	$\begin{gathered} \hline 15 \text { to } \\ 18.5 \end{gathered}$	$\begin{gathered} 22 \text { to } \\ 37 \end{gathered}$	To 3.7	$\begin{gathered} 5.5 \text { to } \\ 15 \end{gathered}$	$\begin{aligned} & \hline 15 \text { to } \\ & 18.5 \end{aligned}$	$\begin{array}{\|c\|} \hline 22 \text { to } \\ 30 \end{array}$	To 4.5	4.5	7 to 9	$\begin{array}{\|c} \hline 11 \text { to } \\ 15 \end{array}$	$\begin{array}{\|c\|} \hline \text { To } 2+2 \\ \text { To } 3.5 \\ +2 \end{array}$	$\begin{gathered} \text { To } 4.5 \\ +3.5 \\ 7+7 \end{gathered}$	$\begin{aligned} & \hline \text { To } 7 \\ & +4.5 \end{aligned}$	7+7				
Unit width	60	90	120	150	60	90	120	150	60	90	120	150	60	90	120	150				
L1, L2, L3, ${ }_{\text {I }}$	M4	M5	M5	M8	-	-	-	-	-	-	-	-	-	-	-	-				
U, V, W, \bigoplus	-	-	-	-	M4	M5	M5	M8	$\begin{array}{\|c\|} \hline \text { M4 } \\ \text { (Note) } \\ \hline \end{array}$	M5	M5	M8	M4	M4	M4	M4				
L+, L-	M6																			
L11, L21	M4																			
MC1	M4	M4	M4	M4	-	-	-	-	-	-	-	-	-	-	-	-				

(Note) M5 screws, the same as V1-45 are used for U, V, W terminal screw sizes of the V1-45S. (Note that the Θ screw is M4.)
(7) Select the wire size as follows for EC Directives compliance. (The sizes are all mm^{2} units.) The wire types are as follows.

> PVC : Polyvinyl chloride
> EPR : Ethylene polypropylene
> SIR : Silicone rubber
(a) MDS-C1-CV (L1, L2, L3, PE)

Unit		37	55	75	110	150	185	220	260	300	370
Wire	PVC	2.5	2.5	4	6	10	16	25	35	50	70
	EPR	1.5	2.5	4	6	10	16	25	35	35	50
	SIR	1.0	1.5	2.5	4	6	10	16	16	25	25
Terminal screw size		M4			M5			M8			

(b) MDS-C1-SP (U, V, W, PE)

Unit		04	075	15	22	37	55	75	110	150	185	220	260	300
Wire	PVC	1.0	1.0	1.0	1.0	1.5	2.5	4	6	10	16	25	35	70
	EPR	1.0	1.0	1.0	1.0	1.5	2.5	4	6	10	16	25	35	50
	SIR	1.0	1.0	1.0	1.0	1.0	1.0	2.5	4	6	10	10	16	25
Terminal screw size		M4					M5					M8		

(c) MDS-C1-V1, V2 (U, V, W, PE)

Unit		01	03	05	10	20	35	45	70	90	110	150
Wire	PVC	1.0	1.0	1.0	1.0	1.5	2.5	4	6	10	25	35
	EPR	1.0	1.0	1.0	1.0	1.0	1.5	4	6	10	16	25
	SIR	1.0	1.0	1.0	1.0	1.0	1.0	2.5	2.5	4	10	16
Terminal screw size		M4							M5		M8	

(d) Wire size for L11 and L21 link bar

Regardless of the power supply unit, spindle drive unit and servo drive unit capacity, the wire size must be $1.5 \mathrm{~mm}^{2}$ or more. (This also applies to the wire between CB-L11 and L21.)
(e) Wire size for $L+$ and $L-$ link bar (for size unification)

Unit		c1.CV. 37	C1-cv. 55	c1.cv. 75	c1-cv.110	C1-CV-150	C1-CV-185	C1-CV-220	C1-CV-260	C1-CV-300	C1-CV-370
Wire	PVC	2.5	2.5	6	10	16	25	35	50	70	-
	EPR	1.5	2.5	4	10	16	25	35	35	70	70
	SIR	1.0	1.5	2.5	4	10	10	16	25	35	35
Terminal screw size		M6									

* The above wire sizes follow EN60204 under the following conditions.
- Ambient temperature: $40^{\circ} \mathrm{C}$
- Wire installed on wall or open cable tray

When using under other conditions, refer to table 5 of EN60204 and Appendix C.

8.6 Selection of $A C$ reactor, contactor and CB

(a) Select the AC reactor, contactor and CB from the following table when using only one power supply unit.

Power supply unit capacity	To 7.5kW				kW		15 to 18.5kW	22 to 30		37kW
$\begin{aligned} & \hline \text { AC reactor } \\ & \text { (ordered part) } \end{aligned}$	B-AL-7.5K (Mitsubishi Electric) * Refer to section "6. Outline Drawing" for the dimensions .			B-AL-1			B-AL-18.5K	B-AL-30K		B-AL-37K
Recommended contactor (non-ordered part)	SN25-AC200V (Mitsubishi Electric) * Refer to section "6. Outline Drawing" for the dimensions.			SN35-AC200V			SN50-AC200V	SN80-AC2	20V	SN150-AC200V
Recommended CB1 (non-ordered part)	NF50CS3P-40A05 (Mitsubishi Electric) * Refer to section "6. Outline Drawing" for the dimensions.			$\begin{aligned} & \text { NF50CS3P-50A } \\ & 05 \end{aligned}$			$\begin{aligned} & \text { NF100CS3P-10 } \\ & 0 \text { A05 } \end{aligned}$	NF225CS3 0 0A05	$3 P-15$	$\begin{aligned} & \text { NF225CS3P-17 } \\ & \text { 5A05 } \end{aligned}$
Recommended CB2 (non-ordered part)	A CB or CP (circuit protector) can be used as the breaker for the motor fan. Select the CB or CP by doubling the motor fan rated current value as a guideline. Contact the CB or CP maker for the recommended wire size.									
	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Spindle } \\ \text { motor frame } \\ \text { size } \end{array} \\ \hline \end{array}$	71	90	112	132	160	180	Servomotor capacity	$\begin{aligned} & \mathrm{HA}-\mathrm{LH} 1 \\ & 1 \mathrm{~K} 2 \end{aligned}$	$\begin{aligned} & \mathrm{HA}-\mathrm{LH} 1 \\ & 5 \mathrm{~K} 2 \end{aligned}$
	Motor fan rated current	0.1A	0.2A	0.2A	0.2A	0.6A	0.6A	Motor fan rated current	0.2A	0.2A
	* A rush current that is approximately double the above rated current will flow when the fan is started.									

(Note 1) The following applies to the above table:

- Ordered parts refer to parts ordered by the user and shipped from Mitsubishi.
- Non-ordered parts refer to parts not ordered, but arranged by the user.
(Note 2) Use the EN/IEC Standards compliant parts for the contactor and CB to comply with the EC Directives.

[^0](b) Select the batch contactor as follows when using two or more power supply units.

Contactor
Total input current $(A)=C V($ No.1 $)$ input current $(A)+C V($ No.2 $)$ input current (A).

Substitute the following for the above equation of right side and obtain the total input current (A):

Power supply unit	C1-CV-37	C1-CV-55	C1-CV-75	C1-CV-110	C1-CV-150
Input current (A)	20	30	40	50	70

Power supply unit	C1-CV-185	C1-CV-220	C1-CV-260	C1-CV-300	C1-CV-370
Input current (A)	80	100	120	135	160

Substitute the total input current (A) value in the following:
Contactor \qquad Rated conductivity current (A) in recommended contactor table
Select the contactor having a rated current larger than the total input current.
(c) The AC reactor and CB cannot be shared between two and more power supply units. Always use one $A C$ reactor or $C B$ for each power supply unit.

[Reference for contactor selection]

Mitsubishi Electric contactor

AC operation AC electromagnetic contactor

Name	Model	AC Class 3 rated working current (A)		Rated conductivity current (A)	Support contact		Dimensions (mm)		
		$\begin{aligned} & 200 \text { to } \\ & 220 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 380 \text { to } \\ & 440 \mathrm{~V} \end{aligned}$		Standard	Special	A	B	C
Open type	S-N10	11	7	20	1a	1b	43	78	78
Non-reversible	S-N11	13	9	20	1 a	1 b	43	78	78
type	S-N12	13	9	20	1a1b	2 a	53	78	78
	S-N18	18	13	25	-	-	43	79	81
	S-N20	20	20	32	1a1b	2a	63	81	81
	S-N21	20	20	32	2a2b	-	63	81	81
	S-N25	26	25	50	2a2b	-	75	89	91
	S-N35	35	32	60	2a2b	-	75	89	91
	S-N50	50	48	80	2a2b	-	88	106	106
	S-N65	65	65	100	2a2b	-	88	106	106
	S-N80	80	80	135	2a2b	-	100	124	127
	S-N95	100	93	150	2a2b	-	100	124	127
	S-N125	125	120	150	2a2b	-	100	150	136
	S-N150	150	150	200	2a2b	-	120	160	145
	S-N180	180	180	260	2a2b	-	138	204	174
	S-N220	220	220	260	2a2b	-	138	204	174
	S-N300	300	300	350	2a2b	-	163	243	195
	S-N400	400	400	450	2a2b	-	163	243	195
	S-N600	630	630	660	2a2b	-	290	310	234
	S-N800	800	800	800	2a2b	-	290	310	234

(Note 1) Noise is generated when the contactor turns ON to OFF, so use of a type with built-in surge absorber is recommended.
[Reference for CB selection]

- CB made by Mitsubishi Electric

Frame A				30		50		60		100		225		400		600		800
Model				NF-30CS		NF50-CP		NF60-CP		NF100-CP		NF225-CP		NF400-CS		NF600-CS		NF800-CS
Appearance																		
```Rated current (A) Reference ambient temp. 40 (IEC: 30}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ For ships: 45}\mp@subsup{}{}{\circ}\textrm{C}```				$\begin{array}{r} 3510 \\ 152030 \end{array}$		$\begin{aligned} & \text { (3) (5) } 1015 \\ & 20304050 \end{aligned}$		$\begin{gathered} (10)(15) \\ (20)(30) \\ (40)(50) 60 \\ \text { (Note 1) } \end{gathered}$		$\begin{aligned} & (50) 60 \\ & 75100 \end{aligned}$		$\begin{gathered} (\text { Note 2) }(100) \\ 125150175 \\ 200225 \end{gathered}$		$\begin{aligned} & 250300 \\ & 350400 \end{aligned}$		500600		$\begin{gathered} \text { Adjustable } \\ 600700800 \end{gathered}$
No. of poles				2	3	2	3	2	3	2	3	2	3	2	3	2	3	3
Rated insulation voltage V			AC	500		600		600		600		600		600		600		600
			DC	-		$\begin{array}{\|c\|} \hline 250 \\ \text { (Note 3) } \end{array}$	-	$\begin{array}{\|c\|} \hline 250 \\ \text { (Note 3) } \end{array}$	-	$\begin{array}{\|c\|} \hline 250 \\ \text { (Note 3) } \end{array}$	-	$\begin{array}{\|c\|} \hline 250 \\ \text { (Note 4) } \end{array}$	-	$\begin{array}{\|c\|} \hline 250 \\ \text { (Note 4) } \end{array}$	-	$\begin{array}{\|c\|} \hline 250 \\ \text { (Note 4) } \end{array}$	-	-
	JIS C8370	AC	550V	-		1.5		1.5		7.5		10		15		18		18
			460V	1.5		2.5		2.5		10		15		25		35		35
			220V	2.5		5		5		25		30		35		50		50
		DC	250 V			2.5	-	2.5	-	7.5	-	10	-	20	-	20	-	-
	IEC 947-2 (Icu/lcs)	AC	690 V	-		-		-		-		-		-		-		-
			500V	-		2.5/1		2.5/1		7.5/4		10/5		15 (Note 5)		$18{ }^{\text {(Note 5) }}$		18 (Note 5)
			440V	$\begin{aligned} & 1.5 / 1.5 \\ & (415 \mathrm{~V}) \end{aligned}$		2.5/1		2.5/1		10/5		15/8		$\begin{gathered} 25(415 \mathrm{~V}) \\ \text { (Note5) } \end{gathered}$		$\begin{gathered} 35(415 \mathrm{~V}) \\ (\text { Note }) \end{gathered}$		$\begin{gathered} 35(415 \mathrm{~V}) \\ \text { (Note 5) } \end{gathered}$
			400V	$\begin{aligned} & \hline 1.5 / 1.5 \\ & (380 \mathrm{~V}) \\ & \hline \end{aligned}$		5/2		5/2		10/5		18/9		$\begin{gathered} 25(380 \mathrm{~V}) \\ \text { (Note5) } \end{gathered}$		$\begin{gathered} 35(380 \mathrm{~V}) \\ \text { (Note5) } \end{gathered}$		$\begin{gathered} 35(380 \mathrm{~V}) \\ (\text { Note } 5) \end{gathered}$
			230V	2.5/2	(240V)	5/2		5/2		25/13		30/15		$\begin{gathered} 35(240 \mathrm{~V}) \\ \text { (Note5) } \end{gathered}$		$\begin{gathered} 50(240 \mathrm{~V}) \\ (\text { Note5) } \end{gathered}$		$\begin{gathered} 50(240 \mathrm{~V}) \\ (\text { Note } 5) \end{gathered}$
		DC	250V	-		2.5/1	-	2.5/1	-	7.5/4	-	10/5	-	$\begin{gathered} 20 \\ \text { (Nole5) } \end{gathered}$	-	$\begin{gathered} 20 \\ \text { (Note5) } \end{gathered}$	-	-
	NK	AC	500V	1.5 (460V)		2.5		2.5		10		15		25		30		50
			250V	2.5		5		5		25		30		35		50		
		DC	250V	-		2.5		2.5		7.5	-	10	-	-		-		-
			a	45	67.5	50	75	50	75	60	90	105		140		210		210
			b	96		130		130		155		165		257		275		275
			c	52		68		68		68		68		103		103		103
			ca	67		90		90		90		92		132		155		155
Surface type product weight (kg)				0.25	0.35	0.45	0.65	0.45	0.65	0.7	1.0	1.3	1.5	5.0	5.8	8.8	9.5	10.9
	Surface type (F)		Page	For crimp terminal		With bar terminal		With bar terminal		With bar terminal								
	Rear surface type(B)		100	Round stud (built-in)		Round stud		Round stud		O Bar	stud	O Bar stud						
	Inlaid type					0		0		$\bigcirc$		0		$\bigcirc$		$\bigcirc$		$\bigcirc$
	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Insertion ty } \\ \text { (PM) } \end{array} \\ \hline \end{array}$					$\bigcirc$		O		$\bigcirc$								
	Alarm switc	(AL)		$\bigcirc{ }^{(N}$	te 6)	$\bigcirc{ }^{(N o}$	te 7)	$\bigcirc{ }^{(N o}$	te 7)	$\bigcirc{ }^{(N o}$		$\bigcirc{ }^{(N o}$		0		0		0
	Auxiliary sw (AX)			$\bigcirc{ }^{(N}$	te 6)	$\bigcirc{ }^{(N 0}$	te 7)	$\bigcirc$ ( ${ }^{1}$	te 7)	O ( No		$\bigcirc$ ( ${ }^{1}$		$\bigcirc$		O		$\bigcirc$
	Voltage trip (SHT)	device	110			$\bigcirc{ }^{(N o}$	te 7)	$\bigcirc$ (No	te 7)	$\bigcirc{ }^{(N o}$		$\bigcirc{ }^{(N o}$		0		O		$\bigcirc$
릉	Undervoltag device (UVT)	e trip				O		O		O		O		O		0		$\bigcirc$
	Vertical lea terminal blo (SLT)		122			O		O		0		O		O		0		$\bigcirc$
	Horizontal terminal blo	ad ck (LT)				-		-		-		-		0		O		$\bigcirc$
	Pre-alarm m (PAL)	dule	124			-		-		-		-		-		-		-

Refer to the following page for the optional parts, etc. of Mitsubishi electric CB.

Frame A				30							225	400	600	800
Model				NF-30CS	NF50-CP		NF60-CP		NF100-CP		NF225-CP	NF400-CS	NF600-CS	NF800-CS
Appearance				$\begin{aligned} & \cos \\ & E \\ & \text { E. } \end{aligned}$										
$\begin{array}{\|l} \left\lvert\, \begin{array}{l} \text { Breaker } \\ \text { box } \\ \text { (in box) } \end{array}\right. \end{array}$		Closed type (S)	134	$\bigcirc$	-	-	-							
		Dustproof type (I)		-	0		O		$\bigcirc$		$\bigcirc$	$\triangle$	$\wedge$	$\wedge$
		Waterproof type (W)		-	-	$\wedge$	-	-	-	$\wedge$	A	$\Delta$	$\wedge$	A
	Electric operation device (NFM)		150	-	-		-		-	$\stackrel{\bigcirc}{-}$   ctric)	O (electric)	(electric, spring charge) (Note 8)	(electric, spring charge) (Note 8)	(electric, spring charge) (Note 8)
	Machine connector (MI)	Panel installation	142	-	$\bigcirc$		$\bigcirc$		$\bigcirc$		$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
		For inlaid type		-						$\checkmark$	$\wedge$	$\wedge$	$\wedge$	$\wedge$
		Direct breaker installation		-	-	$\wedge$	-	$\wedge$	-	A	$\wedge$	A	$\wedge$	$\wedge$
		LC		$\bigcirc$						$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	lock	HL	140	-						$\bigcirc$	$\bigcirc$	O ${ }^{(\text {Note }}{ }^{\text {8) }}$	O ${ }^{\text {(Note } 8)}$	O ${ }^{(N o t e}{ }^{\text {8) }}$
	device	HL-S		-	$\bigcirc$	-	-	-						
		F type		-	$\bigcirc$									
	handle	S type	126	-						$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
		SS type		-						$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	Terminal (TC-L, TTC	$\begin{aligned} & \text { cover } \\ & \text { c, BTC) } \end{aligned}$	137	$\bigcirc$						$\bigcirc$	$\bigcirc$	$\bigcirc\left(\begin{array}{l}\text { TC-L } \\ \text { TTC, } \\ \text { BTC }\end{array}\right)$	O (TC-L)   $\checkmark$ (TTC, BTC)	$\begin{gathered} \bigcirc(\mathrm{TC}-\mathrm{L}) \\ \wedge(\mathrm{TTC}, \mathrm{BTC}) \end{gathered}$
	Rear surfa (B-ST)	ace stud		-						$\bigcirc$	$\bigcirc$	$\triangle$ -	-	-
	Inlaid inst frame (FP)	allation $\qquad$	102	-						$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	Insert term block (PM)	minal		-						$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	^
	IEC35mm installatio	rail n adaptor	149	$\bigcirc$	-	-	-	-						
	verse conn	ection		-						$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	ctrical part	type approva certifie		$\nabla$							-	-	-	-
	ssification proval	Society certified) NK,LR,AB,G		$(\mathrm{NK}, \stackrel{\text { iे }}{\mathrm{L}}, \mathrm{AB})$								ts	tr	is
	ercurrent tr	ip method			ele	omag				Hea	- electromagn	netic	Heat adjustable electromagnetic	Electronic
	h trip butto			- (Note 9)						Yes	Yes	Yes	Yes	Yes

(Note 1) The 50A or less type has the same structure as NF50-CP.
(Note 2) When the rated voltage is 100A, NK is not displayed. The JIS C8370 220VAC rated breaker capacity is 25 kA .
(Note 3) Designate when using for DC. If a 3-pole external part is required, designate Z2P.
(Note 4) Designate when using for DC.
(Note 5) IEC157-1 is displayed. (The breaking capacity value follows P-1 liabilities).
(Note 6) The lead wire horizontal lead-out method is the standard, but a load lead-out type can be manufactured when required. (Only surface type)
(Note 7) This is a cassette type that can be installed by the user. As a standard, this is also compatible with breaker side seating installation,
(Note 8) Order as a set with the breaker unit.
(Note 9) This is enclosed only when the alarm switch (AL) is provided

## II. MDS-C1-CV

## Power Regeneration Type Power Supply Section

1. Power Regeneration Type Power Supply ..... II-2
1.1 C1-CV Outline ..... II-2
1.2 Model configuration ..... II-2
1.3 List of unit models and outlines ..... II-3
1.4 List of specifications ..... II-7
1.5 Hardware and parameter setting ..... II-9
1.6 Status display ..... II-10
1.6.1 7-segment LED display ..... II-10
1.6.2 Charge lamp ..... II-10
1.7 List of alarms and warnings ..... II-11
1.8 Explanation of connectors and terminal block ..... II-13
1.9 Power supply external emergency stop function ..... II-14
1.10 Main circuit connection ..... II-17

## 1. Power Regeneration Type Power Supply

### 1.1 C1-CV Outline

The unit outline, excluding the fins, is same as the B-CV, so the installation is compatible with the B-CV. However, the positions of the connectors (CN4,9) and the ground ( $\rightleftharpoons$ ) ) differ, so take care when wiring. The C1-CV does not use a rush relay, so the alarms "65" and "6B" have been deleted.
The precautions related to conform to the European EC Directives, unit installation, applicable cables and connection are same as the B-CV. (Refer to "MDS-B Series Specifications Manual BNP-B3759B" for details.)
With the B-CV, a mechanical contact was used for the external contactor's drive circuit, but with the C1-CV, a semiconductor element has been incorporated to eliminate the contact life. However, to protect the circuit, a leakage current of 15 mA or less will flow from the MC1 terminal, so do not use a contactor that can function at a 15 mA coil current. If the contactor has an electronic circuit inside, it could malfunction due to the leakage current, so confirm that the contactor will not malfunction before using it.
(Refer to the external contactor listed in "1.4 List of specifications".)
With the C1-CV, the power voltage distortion can be monitored with the L11 and L21 terminals.
To prevent incorrect judgments during regeneration, always wire the L11 and L21 on the AC reactor commercial power supply side and with the power supply for the same system as the L1, L2 and L3 terminals.
An external contactor was always required for the B-CV-370, but the C1-CV-370 can be used without the external contactor. Thus, whether to use the external contactor can be selected.

### 1.2 Model configuration

## MDS-C1-CV Series

MDS-C1-CV- $\square$
Power supply capacity class symbol

Symbol	Capacity
37	3.7 kW
55	5.5 kW
75	7.5 kW
110	11 kW
150	15 kW
185	18.5 kW
220	22 kW
260	26 kW
300	30 kW
370	37 kW

### 1.3 List of unit models and outlines

(1) List of units

No.	Model	Capacity   $\mathbf{( k W )}$	Weight   $\mathbf{( k g})$	Outline	
				Type	
1	CV-37	3.7	3.5	$380 * 60 * 200$	
2	CV-55	5.5	4.0	$380 * 60 * 200$	A1
3	CV-75	7.5	4.0	$380 * 60 * 200$	
4	CV-110	11	6.0	$380 * 90 * 255$	B1
5	CV-150	15	7.0	$380 * 120 * 255$	
6	CV-185	18.5	7.0	$380 * 120 * 255$	
7	CV-220	22	9.0	$380 * 150 * 255$	D1
8	CV-260	26	9.0	$380 * 150 * 255$	
9	CV-300	30	9.5	$380 * 150 * 255$	
10	CV-370	37	9.5	$380 * 150 * 255$	

(2) List of unit outline dimensions

Outline type	A1	B1	C1	D1
$\begin{gathered} \mathrm{H} * \mathrm{~W} * \mathrm{D} \\ \mathrm{~mm} \end{gathered}$	$380 * 60 * 200$	$380 * 90 * 255$	$380 * 120 * 255$	$380 * 150 * 255$
Outline drawing (mm)		$\text { W: } 90$   (Fin section: 75) Including wind passage space   D: 255   H: 380		

## $\triangle$ CAUTIO <br> N

Never hold the case section when holding the unit as the unit could drop or the case could be damaged. When holding the unit, always hold the installation sections (aluminum) at the top and bottom of the unit with both hands. Note that the top and bottom installation sections are made of aluminum, and the edges can be dangerous. Carefully handle the unit and wear protective gloves if necessary.
(3) Unit detailed outline dimension drawing

$$
\left[\begin{array}{r}
\mathrm{C} 1-\mathrm{CV}-37 \\
-75 \\
-75
\end{array}\right]
$$


[C1-CV-110] $\left[\begin{array}{c}\text { C1-CV-150 } \\ -185\end{array}\right]$


$\underline{\text { Installation hole dimension }}$

(4) CN23 connector layout drawing

The position of the CN23 connector has been changed as shown below.
These drawings show the view from below the unit. (The cooling fins are not shown.)
7.5 kW or less


11 kW to 18.5 kW


22kW to 37 kW


$$
\text { II - } 6
$$

### 1.4 List of specifications

		Power supply unit MDS-C1-CV Series									
Model MDS-C1-CV-		37	55	75	110	150	185	220	260	300	370
Rated output [kW]		3.7	5.5	7.5	11.0	15.0	18.5	22.0	26.0	30.0	37.0
Input	Rated voltage [V]	200/200-230VAC									
	Frequency [Hz]	$50 / 60 \mathrm{~Hz}$ Frequency fluctuation within $\pm 3 \%$									
	$\begin{array}{ll} \hline \begin{array}{l} \text { Rated } \\ \text { current } \end{array} & {[A]} \\ \hline \end{array}$	16	20	26	35	49	66	81	95	107	121
Output	Rated [V] voltage	270-311VDC									
	$\begin{array}{ll} \hline \begin{array}{l} \text { Rated } \\ \text { current } \end{array} \end{array}[\mathrm{A}]$	17	20	30	41	58	76	95	115	144	164
Contro Power supply	Voltage [V]	200/200-230VAC									
	Frequenc [Hz]	$50 / 60 \mathrm{~Hz}$									
	Current [A]	Max. 0.2A									
Main circuit method		Converter with power regeneration circuit (intelligent power module incorporated)									
Structure		Fully enclosed, self-cooling (protection degree: IP65, IP67)									
Environment	$\begin{aligned} & \text { Ambient } \\ & \text { temperatur }\left[{ }^{\circ} \mathrm{C}\right] \\ & \mathrm{e} \end{aligned}$	Operation: 0 to $55^{\circ} \mathrm{C}$ (non freezing), Storage/transportation: $-15^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ (non freezing)									
	Ambient humidity [\%RH]	Operation: 90\%RH or less. (non condensing),   Storage/transportation: 90\%RH or less. (non condensing)									
	Atmosphere	Indoors (no direct sunlight): no corrosive gas, inflammable gas, oil mist, or dust									
	Elevation [m]	Operation/storage: 1000 meters or less above sea level, Transportation: 10000 meters or less above sea level									
	$\begin{aligned} & \text { Vibration } /\left[\mathrm{m} / \mathrm{s}^{2}\right] \\ & \text { Impact } \end{aligned}$	$4.9 \mathrm{~m} / \mathrm{s}^{2}(0.5 \mathrm{G}) / 49 \mathrm{~m} / \mathrm{s}^{2}(5 \mathrm{G})$									
Cooling type		Self-cooling			Forced air cooling						
Weight [kg]		3.4			4.6	5.8	6.0	8.3	8.4	8.6	8.8
$\begin{array}{\|l} \hline \begin{array}{l} \text { Maximum } \\ \text { heating value } \end{array} \\ \hline \end{array}$		55	65	80	125	155	195	210	260	320	400
Noise		Less than 55dB									
Required devices		An AC reactor is required for each power supply unit. (Use the AC reactor used with the existing B-CV.)									


External contactor	The unit can be used without the contactor.   However, use of the contactor is recommended for safety purposes.   With the B-CV-370, a contactor was always required.   Note: A semiconductor element (TRIAC) is used for the contactor drive circuit, so a leakage current of 15 mA or less will flow with its protective surge killer.   Do not use a contactor that turns ON at 15 mA or less or a contactor that cannot be turned OFF at the leakage current 15 mA .   When using a contactor with an electronic circuit inside, contact the contactor maker and confirm that it will operate correctly at the 15 mA leakage current.   Note that there are some contactors that will not turn OFF unless separated from the mechanical contact.   The Mitsubishi S-N Series or S-K Series is recommended.   Before using a contactor other than the recommended type, confirm the operation in respect to the leakage current.   * The internal circuit configuration is shown below. (Reference drawing)

### 1.5 Hardware and parameter setting

(1) Hardware settings

Set the rotary switch (SW1) as shown below.

SW1 setting	C1-CV specifications	
0	During operation with contactor (deposits are detected)	External emergency stop
1	During operation with no contactor	When not used
2	Setting prohibited	
3		
4	During operation with contactor (deposits are detected)	External emergency stop
5	During operation with no contactor	When used
6	Setting prohibited	
7		
8		
9		
10		
11		
12		
13		
14		
15		

(2) Parameter settings

The following parameter is set only for the drive unit to which the power supply unit is connected.

[Servo parameters/spindle parameters]   SV036/SP041 PTYP   FEDCBA9876543210		ptyp Power supply type (Set the model as shown below.)			
		Power supply unit	PTYP		
		External emergency	External emergency		
	ptyp		stop   When not used	stop   When used	
Note) If SP-370 or above is connected to CV-220 or above, set the PTYP bit8 to "1".   Correct operations will not take place if this is not set.			Not connected	00	00
		C1-CV-37	04	44	
		C1-CV-55	06	46	
		C1-CV-75	08	48	
		C1-CV-110	11	51	
		C1-CV-150	15	55	
		C1-CV-185	19	59	
		C1-CV-220	22	62	
		C1-CV-260	26	66	
		C1-CV-300	30	70	
		C1-CV-370	37	77	

### 1.6 Status display

## WARNING

1. Do not touch the switches with wet hands. Failure to observe this could lead to electric shocks.
2. Do not operate the unit with the front cover removed. The high voltage terminals and charged sections will be exposed, and can cause electric shocks.
3. Do not open the front cover while the power is ON or during operation. Failure to observe this could lead to electric shocks.

## CAUTION

1. Check and adjust each program and parameter before starting operation. Failure to do so could lead to unforeseen operation of the machine.
2. Do not touch the fin on the servo drive unit, regenerative resister or servomotor, etc., while the power is turned ON or immediately after turning the power OFF. These parts may reach high temperatures, and can cause burns.

### 1.6.1 7-segment LED display

(1) Power ON


Initializing


Ready OFF

Ready ON, servo OFF


Servo ON
(2) Display during alarm (example shows overvoltage alarm)


The alarm No. flickers
(3) Display during warning


The warning No. flickers
(4) Watch dog alarm


### 1.6.2 Charge lamp

This lamp lights when the voltage between $L+$ and $L$ - is charged over a set level. Always confirm that the charge lamp is not lit, and using a tester, confirm that the voltage has been discharged before starting maintenance work such as replacing the unit.

### 1.7 List of alarms and warnings

CAUTION
When an alarm occurs, remove the cause of the alarm, confirm that an operation signal is not being   input, and secure the safety. Then reset the alarm to resume operation.

When an alarm occurs in the power supply unit, the servo drive unit will carry out the base interception and the motor will coast to a stop. In such case, turn the power OFF with an external sequence. (Refer to "1.10 Main circuit connection".)
To reset an alarm, remove the cause, and then turn the power ON.
(1) Alarms
[Alarm No.] Alarm No. displayed on drive unit connected with power supply unit
[LED display] LED display on power supply unit
[Release] AR : Release by turning power supply unit on again
PR : Release by turning the NC power supply on again
NR : Release with the NC RESET key

Alarm No.	$\begin{array}{\|c\|} \hline \text { LED } \\ \text { display } \end{array}$	Name	Meaning	Release
61[6]	-	Power module overcurrent	An overcurrent (oc) was detected in the power module (IPM).	PR
$62[62]$	2	Frequency error	The input power frequency was not within the specifications range.   Specifications: $50 \mathrm{~Hz} \pm 3 \% 60 \mathrm{~Hz} \pm 3 \%$	PR
$67[6 ;]$	i	Open phase	One of the input power phases ( $\mathrm{R}, \mathrm{S}, \mathrm{T}$ ) is open.	PR
$68[86]$	3	Watch dog	The power supply software process did not complete within the set time.	AR
$69[65]$	9	Ground fault	There is a ground fault in the motor. This is detected only at READY ON.	PR
6A [58]	Fi	$\begin{array}{l}\text { External } \\ \text { contactor melt }\end{array}$	The externally installed contactor turned on even during READY OFF.	PR
6C [60]	:-	Main circuit error	The main circuit capacitor charging operation is not normal.	PR
$6 \mathrm{E}[\mathrm{SE]}]$	:	Memory error	An error occurred in the memory circuit.	AR
6F [6: ${ }^{\text {c }}$ ]	:	AD converter error   Power supply error	An AD converter error or power supply error was detected.	AR
71 [1]]	H	Instantaneous stop External emergency stop	The external contactor turned off even during READY ON.   An instantaneous power stop occurred for 55 ms or more.	NR
73 [9]	d	$\begin{array}{\|l\|} \hline \text { Over-regeneratio } \\ \mathrm{n} \end{array}$	The regeneration performance limit of the power supply was exceeded.	$\begin{gathered} \text { PR } \\ \text { (Note 1) } \\ \hline \end{gathered}$
75 [ $\mathrm{i}_{5}^{5}$ ]	:	Overvoltage	The voltage between L+ and L- exceeded 410V.	$\begin{gathered} \mathrm{NR} \\ \text { (Note 2) } \\ \hline \end{gathered}$
76 [16]	$i$	External emergency stop setting error	The rotary switch setting and parameter (PTYP) setting do not match.	AR
77 [1]	${ }^{17}$	Power module overheat	Overheating of the power module (IPM) was detected.	AR

(Note 1) With alarm "73", to prevent immediately resumption of operation from the over-regeneration state, the alarm cannot be released unless the control power (L11, L12) continuity state has continued for 15 minutes or more after the alarm has occurred. The alarm cannot be released even if the NC power or control power is turned ON immediately after the alarm occurs. If the power is turned ON immediately after the alarm occurred, wait 15 minutes or more in the continuity state, and then turn the power ON again.
(Note 2) Immediately after alarm "75" occurs, the voltage between $L+$ and $L$ - will be higher than the power voltage, so if the alarm is reset in this state, another alarm could occur. Wait at least five minutes before resetting alarm "75".

## (2) Warning

Warning No.	LED display	Name	Meaning
E9 [EG]	P [ F ]	Instantaneous stop warning	An instantaneous power stop occurred for 25 ms or more. (As the main circuit voltage has not dropped, an alarm has not occurred.)
EA [6 ¢il	q [9]	External emergency stop input	The external emergency stop input signal was input. ( 24 V is not applied on the CN23 connector.)
EB [ Ec ] $]$	r [ - ]	Over-regeneration warning	80\% of the over-regeneration alarm level was reached.

### 1.8 Explanation of connectors and terminal block

		Name	Application	Remarks
Connector		$\begin{gathered} \hline \mathrm{CN4} \\ \mathrm{CN} 9 \\ \mathrm{CN} 23 \end{gathered}$	For connection of servo drive unit and spindle drive unit (CH1)   For connection of servo drive unit and spindle drive unit (CH2)   For connection of the external emergency stop	
Terminal block	TE2	$\begin{aligned} & \mathrm{L}+ \\ & \mathrm{L}- \end{aligned}$	Converter voltage output (+)   Converter voltage output (-)	
	TE3	L11   L12   MC1	200VAC single phase input   For externally installed contactor relay control	
	TE1	$\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{~L} 2 \\ & \mathrm{~L} 3 \\ & \hline \end{aligned}$	3-phase input power 200/220VAC	
Unit installation base		$(1)$	Ground	



View A


### 1.9 Power supply external emergency stop function

## (1) Outline

The external emergency stop signal that is input directly to the power supply has been added to the emergency stop signal from the NC bus line, allowing double protection to be provided. Synchronize the external emergency stop signal with the emergency stop signal from the NC.

## (2) Details of detection

(a) Setting

When using the external emergency stop, the protection setting must be validated with the rotary switch on the front of the MDS-C1-CV and the parameter (PTYP) of the connected drive unit.

Rotary switch : External contactor valid ....... Set to $4 \Leftrightarrow$

$$
\text { External contactor invalid..... Set to } 5 \text { 机 }
$$

Parameter (PTYP) : Add 0040 to the currently set value.

## (Example)

Current	Setting value
0008	0048
0030	0070

Note) If either of the settings are not made, an "external emergency stop setting error" will occur.
(b) Detection details

If the external emergency stop input is detected continuously for 200 ms or more, this function will start.
If the contactor OFF command from the NC is not received within 30 seconds after the external emergency stop input is detected, the CV itself will turn the contactor OFF.
(c) Alarm (Warning) list

CV display (flicker)	Connected drive unit display	Alarm/warning details
m [ ¢í]	76 [ ${ }_{\text {c }}^{6}$ ]	External emergency stop setting error
$q^{[9]}$	$E A\left[\begin{array}{ll}\text { [ }\end{array}\right.$	Emergency stop state is applied from NC when external emergency stop input is input.
q['] ]	6F[日, ¢ ¢ ]	When emergency stop from NC is not applied even when the external emergency stop is input

(3) Connection


* The current that flows when the contact is ON is 15 mA .

Make sure not to mistake the polarity.
(This function will not work if the 24VDC polarity is mistaken.)

* The emergency stop operation is applied when the SW in the diagram opens.
(4) Connector name

Part No.	Name	Type	Maker
101	Connector	$2-178288-3$	Japan AMP
102	Contact	$1-175218-2$	Japan AMP

Wire size: 0.5 to 1.25 SQ


## (5) Example of emergency stop circuit

## (a) Outline of function

The power supply unit's external emergency stop can be validated by wiring to the CN23 connector, and setting the parameters and rotary switch. If the emergency stop cannot be processed and the external contractor cannot be shut off (due to a fault) by the CNC unit, the external contactor can be shut off by the power supply unit instead of the CNC. At this time, the spindle motor will coast and the servomotor will stop with the dynamic brakes.
EN60204-1 Category 1 can be basically complied with by installing the external emergency stop switch and contactor.

## . CAUTION

1. The power supply unit external emergency stop function is a function that assists the NC emergency stop.
2. The emergency stop signal input to the CNC side cannot be used as a substitute for the external emergency stop function (CN23).
3. It will take 30 seconds for the external contactor to function after the emergency stop is input to CN23. (This time is fixed.)
(b) Example of emergency stop circuit The emergency stop is a signal used to stop the machine in an emergency. This is connected to the CNC unit. Wire to the power supply unit when necessary. The servo/spindle unit will be decelerated and controlled by the software according to the deceleration stop command issued from the CNC unit.
The diagram on the right shows an example of the emergency stop circuit (EN60204-1 Category 0 stop) in which an off delay timer (TM1) is installed as a power shutoff method independent from
 the NC emergency stop input. The required safety category may be high depending on the machine and the Safety Standards may not be met. Thus, always pay special attention when selecting the parts and designing the circuit.

Setting the off delay timer (TM1) time
Set the TM1 operation time so that it functions after it has been confirmed that all axes have stopped.
If the set time is too short, the spindle motor will coast to a stop.
$\mathrm{tm} \geq$ All axes stop time

Provide a mechanism that shuts off the power even if the CNC system fails.

Stop Categories in EN60204-1

- Category 0: The power is instantly shut off using machine parts.
- Category 1: The drive section is stopped with the control (hardware/software or communication network), and then the power is instantly shut off using machine parts.
(Caution) Refer to the Standards for details. Refer to Section 9.2.5.4.2 in EN60204-1: Safety of Machinery Electrical Equipment of Machines - Part 1.


### 1.10 Main circuit connection

## 〔 WARNING

Ground the servo drive unit and servomotor with Class $C$ (former class 3 ) grounding or higher.

## CAUTION

1. Correctly connect the output side (terminals U, V, W). Failure to do so could lead to abnormal operation of the servomotor.
2. Do not apply a voltage other than that specified in Instruction Manual on each terminal. Failure to observe this item could lead to ruptures or damage, etc.
3. Note that the power supply unit MDS-C1-CV protection ground is provided on the unit installation base instead of the terminal block. Correctly connect this ground.
4. To prevent malfunctioning of the contactor, use a contactor that does not turn ON at an operation coil current of 15 mA or less and a relay, or a contactor that can be turned OFF at 15 mA and a relay.
(Refer to the external contactor in "1.4 List of specifications".)
5. As shown below, always wire the L11 and L21 terminals on the AC reactor commercial power supply side and with same phase power supply as the L1, L2 and L3 terminals.
When inserting a power stabilization unit, such as a UPS, to the L11, L21 terminals, use unit for which the UPS input/output voltage phases are the same.
Correct regeneration control will not be possible if the L11, L12 terminals and L1, L2, L3 terminals are wired from a separated power supply (not synchronized). Do not use this setup.


## Precautions for connections

(1) The wires and crimp terminals will differ according to the capacity. (Refer to " 8.5 " in the Chapter I Servo/Spindle System Configuration Section.)
(2) A 200 V class power supply is used.

The main circuit section does not have a transformer so always ground it.
(3) The phase order of the power supply terminals L1, L2, L3 is random.
(4) Refer to "8.4" in the Servo/Spindle System Configuration Section for the selection of the contactor, AC reactor and Circuit Breaker connected to the power supply.
(5) The specified power supply must be connected to the drive unit power supply terminals (L1, L2 and L3). Adjust voltage using a transformer when the power supply is not as specified.
(6) The power lines ( $R, S, T$ ) must not be connected to the motor output terminals ( $U, V, W$ ).
(7) The output terminal ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ) and motor terminal ( $\mathrm{A}, \mathrm{B}, \mathrm{C}$ ) phases must match.
(8) Do not directly apply commercial power on the motor.
(9) Check once again that the wires are connected correctly as indicated in the connection diagram.
(10) As shown below, do not connect a general control relay to the contactor drive terminal MC1. If a relay must be used, select one following the external contactor conditions given in "1.4 List of specifications". If the relay does not operate correctly, install a surge absorber on the relay coil terminal.
Recommended surge absorber: OKAYA ELECTRIC XEB0475 ( $47 \Omega+0.5 \mu \mathrm{~F}$ ) VDE0565-1
When using a different surge absorber, select one that has a resistance value of 47 to $220 \Omega$ and a capacitor that is $0.5 \mu \mathrm{~F}$ or more.


200/220VAC $50 / 60 \mathrm{~Hz}$

## III. MDS-C1-Vx

Servo System Section

1. Outline ..... III-2

## 1. Outline

## (1) High performance

High-performance servo control equivalent to the high gain drive unit ( $B-V 14 / V 24$ ) is mounted.

## (2) Compact

The fin outline dimensions have been downsized with the high-efficiency fin and low-loss compact IPM, and a thin drive unit has been realized.

## (3) Reliability

The heating value has been reduced by incorporating a low-loss IPM, and the inner support structure has been strengthened by integrating the terminal block and wiring conductors. Through these element developments, the reliability has been improved from the existing $B$ Series.

## (4) Compatibility

This unit can be used in the same machine as the B Series without problem. The installation dimensions and servo/spindle parameters are compatible with the B Series.

- Outline dimensions, installation dimensions, terminal connection Compatible with current B Series.
* Some changes have been made to the PE terminal position and control terminal positions (in some capacities).
(Refer to "Outline Manual BNP-B8361-403" for details.)
- Control functions (servo)

Replacement from the standard drive unit (B-V1/V2) or high-gain drive unit (B-V14/V24) is automatically judged. The parameters are compatible. Refer to the following pages for details.

* There are some limits to the motor end encoder. Refer to the following pages.
* This unit is shipped with the high-gain specifications as the default. Refer to the following pages.
- Control functions (spindle)

The control functions and parameters are compatible.

* This unit can be used in the same machine as the B Series without problem.

2. Motor ..... III-4
2.1 Outline ..... III-4
2.2 Model configuration ..... III-5
2.3 Main equipment list ..... III-7
2.4 Specifications list ..... III-8
2.5 Torque characteristics ..... III-15
2.6 Duty drive characteristics ..... III-22
2.7 Outline dimension drawings ..... III-25
2.8 Motor connection ..... III-43
2.9 Motors with electromagnetic brake ..... III-48
2.10 Motor vibration resistance ..... III-53
2.11 Motor shaft strength ..... III-54
2.12 Environmental conditions ..... III-56

## 2. Motor

### 2.1 Outline

The following motor series are compatible with MDS-C1-Vx Series.

## (1) HC Series

- By incorporating a new neodymium magnet, the $L$ dimensions have been shortened by approx. $40 \%$ compared with the existing HA Series servomotors, by that contributing to downsizing of the machine.
- The shaft shape and flange size are the same as the existing HA Series servomotors, so replacement from the HA Series is possible.
- A max. 1,000,000 pulse/rev absolute position detector is incorporated, allowing ultra-high-accuracy control to be realized. A 100,000 pulse/rev detector is also available.
(2) $\mathrm{HC} * * \mathrm{R}$ Series
- The low-inertia specification $\mathrm{HC} * * \mathrm{R}$ Series servomotors have been prepared as a servomotor for use in CNC machine peripheral axes. This Series is compact and has a high power rate, so it is suitable for high-speed positioning of peripheral axes. This also contributes to shortening the cycle time.
(3) HA Series
- Existing HA Series servomotors can be used to allow replacement from the existing servo drive unit MDS-A/B Series.


## \$. CAUTION

The detector is only compatible with the serial encoder (OSE104, OSA104, OSE105, OSA105).

### 2.2 Model configuration

## (1) HC Series

HC | (a) | (b) (c) (d) - (e) |
| :--- | :--- |

(e) Detector

Symbol	Detection method	Detector resolution	Detector type
E42	Incremental	100,000p/rev	OSE104S2
E51		1,000,000p/rev	OSE105S2
A42	ABS (Absolute position)	100,000p/rev	OSA104S2
A51		1,000,000p/rev	OSA105S2

(d) Protective structure

Symbol	Protective structure
None	IP65
P	IP67

(c) Shaft end shape

Symbol	Shaft end shape	
Motors of medium inertia 2 kW or		
S	Straight	larger and low inertia 3.5 kW or
T	Taper	larger only have straight shafts.

(b) Magnetic brake

Symbol	Magnetic brake
None	None
B	With magnetic brake

(a) Rated output, rated rotation speed and motor series

HC** Series				HC $* *$ R SeriesRating3000r/min	
Rating 2000r/min		Rating 3000r/min			
Symbol	Rated output	Symbol	Rated output	Symbol	Rated output
52	0.5 kW	53	0.5 kW	103R	1.0kW
102	1.0 kW	103	1.0 kW	153R	1.5 kW
152	1.5 kW	153	1.5 kW	203R	2.0 kW
202	2.0 kW	203	2.0 kW	353R	3.5 kW
352	3.5 kW	353	3.5 kW	503R	5.0 kW
452	4.5 kW	453	4.5 kW		
702	7.0 kW	703	7.0 kW		
902	9.0 kW				

## (2) HA Series



N-type   2000r/min		N-type   3000r/min		L-type   2000r/min		L-type   3000r/min	
Motor	kW	Motor	kW	Motor	kW	Motor	kW
40	0.5	053	0.05	50	0.5	53	0.5
80	1.0	13	0.1	100	1.0	103	1.0
100	2.0	23	0.3	150	1.5	153	1.5
200	3.5	33	0.45	200	2.0	203	2.0
300	4.5	43	0.5	300	3.0	303	3.0
700	7.0	83	1.0	500	5.0	503	5.0
900	9.0	103	2.0	-LH11K2	11.0		
		203	3.5	-LH15K2	15.0		
		303	4.5				
		703	7.0				

### 2.3 Main equipment list

(1) HC motor main equipment

(2) HA motor main equipment

Maximum speed		2000r/min			3000r/min				
Item	Motor model	$\begin{array}{\|l} \text { HA40N } \\ \text { HA80N } \end{array}$	HA100N HA200N HA30ON	$\begin{aligned} & \text { HA700N } \\ & \text { HA900N } \end{aligned}$	$\begin{aligned} & \text { HA053 } \\ & \text { HA13 } \end{aligned}$	$\begin{aligned} & \text { HA23N } \\ & \text { HA33N } \end{aligned}$	$\begin{aligned} & \text { HA43N } \\ & \text { HA83N } \end{aligned}$	HA103N HA203N	$\begin{aligned} & \text { HA303N } \\ & \text { HA703N } \end{aligned}$
Oil	Presence	0	0	0	0	0	0	0	0
Oil sea	Absence	$\times$	$\times$				$\times$	$\times$	$\times$
	Straightshaft	$\wedge$	0	0	0	0	$\wedge$	0	0
Shaft end	Tapered shaft	$\bigcirc$	$\times$	$\times$	$\times$	$\bigcirc$	$\bigcirc$	$\times$	$\times$
Electro-	Presence	0	0	0	0	0	0	0	0
magnetic brake	Absence	$\bigcirc$							
Connector	Cannon connector	$\bigcirc$	$\bigcirc$	$\wedge$	$\bigcirc$	0	$\bigcirc$	$\bigcirc$	$\times$
type	Terminal box			0				$\times$	0
1P65/67	mpatible	$\wedge$	$\wedge$	$\times$		$\triangle$	$\wedge$	$\wedge$	$\times$


Maximum speed		2000r/min			3000r/min		
Item	Motor model	HA50NL HA100NL HA150NL	$\begin{aligned} & \text { HA200NL } \\ & \text { HA300NL } \\ & \text { HA500NL } \end{aligned}$	HA-LH11K2 HA-LH15K2	HA53NL HA103NL HA153NL	$\begin{aligned} & \text { HA203NL } \\ & \text { HA303NL } \end{aligned}$	HA503NL
Oil seal	Presence	$\bigcirc$	$\bigcirc$	0	$\bigcirc$	0	0
	Absence	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$
Shaft end	Straight shaft	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
	Tapered shaft	$\bigcirc$	$\times$	$\times$	$\bigcirc$	$\times$	$\times$
Electromagnetic brake	Presence	$\times$	$\times$	$\times$	$\times$	$\times$	$\times$
	Absence	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$
Connecto r type	Cannon connector	$\bigcirc$	0	$\times$	0	0	$\times$
	Terminal box	$\times$	$\times$	$\bigcirc$	$\times$	$\times$	$\bigcirc$
IP65/67 compatible		$\times$	$\times$	$\times$	$\times$	$\times$	$\times$

$\bigcirc$ : Standard product $\wedge$ : Special product $\times$ : No specification

### 2.4 Specifications list

## (1) HC Series

Motor model			HC Series 2000r/min rating)							
			NC specifications: HC**-E51-E42, ABS specifications:HC**-A51-A42							
			HC52	HC102	HC152	HC202	HC352	HC452	HC702	HC902
	Rated output	[kW]	0.5	1.0	1.5	2.0	3.5	4.5	7.0	9.0
	Rated current	[A]	3.2	6.0	9.0	10.7	16.9	23.3	32.8	40.8
	Stall current	[A]	3.94	7.4	11.1	15.4	22.9	40.4(31.5)	46.2(41.0)	55.9
	Rated torque ( $\pm 10 \%$ )	[ $\mathrm{N} \cdot \mathrm{m}$ ]	2.39	4.78	7.16	9.55	16.7	21.5	33.4	43.0
	Stall torque ( $\pm 10 \%$ )	[ $\mathrm{N} \cdot \mathrm{m}$ ]	2.94	5.88	8.82	13.7	22.5	37.2(29.0)	49.0(44.0)	58.8
Rated rotation speed		[r/min]	2000							
Maximum rotation speed		[r/min]	2000							
Maximum current		[A]	17	28	47	47	64	85	113	141
Maximum torque ( $\pm 10 \%$ )		[ $\mathrm{N} \cdot \mathrm{m}$ ]	11.8	21.6	35.3	41.7	59.8	87.5	120	153
Power rate at continuous rated torque		[kW/s]	8.7	16.7	25.6	21.5	34.0	38.2	69.7	82.5
Instantaneous angle acceleration		$\left[\mathrm{rad} / \mathrm{s}^{2}\right]$	21530	18599	15680	9859	7293	7233	7500	7518
Motor inertia		$\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	6.6	13.7	20.0	42.5	82	121	160	204
Motor inertia with brake		$\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	8.6	15.7	22.0	51.1	92	131	170	214
Recommended motor shaft conversion load inertia rate			High-speed, high-accuracy machine : 2 times or less of motor inertia General machine tool : 3 times or less of motor inertia General machine $\quad: 5$ times or less of motor inertia							
Armature resistance   (phase $20^{\circ} \mathrm{C}$ )			1.44	0.57	0.30	0.21	0.10	0.052	0.047	0.033
Armature inductance (phase $20^{\circ} \mathrm{C}$ )		[mH]	6.9	2.9	1.8	3.7	2.0	0.87	0.76	0.62
Inductive voltage constant (phase $20^{\circ} \mathrm{C}, \pm 10 \%$ )		[mV/r/min]	31.1	30.8	31.2	33.8	37.3	35.5	38.1	38.7
Torque constant ( $\pm 10 \%$ )		[ $\mathrm{N} \cdot \mathrm{m} / \mathrm{A}$ ]	0.89	0.88	0.89	0.97	1.07	1.02	1.09	1.11
Electrical time constant		[ms]	4.8	5.1	6.0	17.7	20.0	16.7	16.2	18.9
Mechanical time constant		[ms]	3.6	3.0	2.3	2.8	2.2	1.8	1.9	1.6
Thermal time constant		[min]	15	20	25	35	45	50	55	60
Static friction torque		[ $\mathrm{N} \cdot \mathrm{m}$ ]	0.13	0.18	0.20	0.16	0.21	0.40	0.50	0.59
Armature coil temperature upper limit degree			100							
Motor end detector			Resolution per motor rotation   E51/A51: 1000000 pulse/rev, E42/A42: 100000 pulse/rev							
Structure			Fully closed, self-cooling (protective degree: IP65, IP67)							
Environment conditions			To follow section "2.12 Environment conditions"							
Weight	Without/with brake	[kg]	5.0/7.5	7.0/9.0	9.0/11	12/18	19/25	25/30	32/38	45/51
Armature insulation class			Class F							

(Note 1) The above characteristics values are representative values. The maximum current and maximum torque are the values when combined with the drive unit.
(Note 2) The values in parentheses are for combination with the $S$ type drive unit.

Motor model			HC Series $\quad 3000 \mathrm{r} / \mathrm{min}$ rating)						
			INC specifications: HC**-E51/-E42, ABS specifications: HC**-A51/-A42						
			HC53	HC103	HC153	HC203	HC353	HC453	HC703
	Rated output	[kW]	0.5	1.0	1.5	2.0	3.5	4.5	7.0
	Rated current	[A]	3.2	5.3	8.6	10.4	16.5	22.1	30.5
	Stall current	[A]	5.8	9.8	15.9	22.4	33.3	57.3	69.2
	Rated torque ( $\pm 10 \%$ )	[ $\mathrm{N} \cdot \mathrm{m}]$	1.59	3.18	4.77	6.37	11.1	14.3	22.3
	Stall torque ( $\pm 10 \%$ )	[ $\mathrm{N} \cdot \mathrm{m}]$	2.94	5.88	8.82	13.7	22.5	37.2	49.0
Rated rotation speed [r/min]			3000						
Maximum rotation speed		[r/min]	3000						
Maximum current		[ A ]	17	28	47	64	85	113	141
Maximum torque ( $\pm 10 \%$ )		[ $\mathrm{N} \cdot \mathrm{m}]$	8.82	16.7	28.4	40.2	55.9	79.8	105
Power rate at continuous rated torque		[kW/s]	3.8	7.4	11.4	9.5	15.0	16.9	29.3
Instantaneous angle acceleration		$\left[\mathrm{rad} / \mathrm{s}^{2}\right]$	7234	6970	14308	9459	6817	6593	6566
Motor inertia		$\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	6.6	13.7	20.0	42.5	82	121	160
Motor inertia with brake		$\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	8.6	15.7	22.0	52.5	92	131	170
Recommended motor shaft conversion load inertia rate			High-speed, high-accuracy machine : 2 times or less of motor inertia General machine tool $\quad: 3$ times or less of motor inertia						
Armature resistance   (phase $20^{\circ} \mathrm{C}$ )			0.55	0.33	0.20	0.11	0.06	0.030	0.026
Armature inductance (phase $20^{\circ} \mathrm{C}$ )		[mH]	2.8	1.8	1.1	2.0	1.05	0.60	0.49
Inductive voltage constant (phase $20^{\circ} \mathrm{C}, \pm 10 \%$ )		[mV/r/min]	20.4	24.4	23.5	24.0	26.4	26.7	27.4
Torque constant ( $\pm 10 \%$ )		[ $\mathrm{N} \cdot \mathrm{m} / \mathrm{A}]$	0.58	0.70	0.67	0.69	0.76	0.76	0.79
Electrical time constant		[ms]	5.1	5.5	5.4	17.2	17.4	20.1	19.0
Mechanical time constant		[ms]	3.2	2.8	2.7	3.1	2.6	1.8	2.0
Thermal time constant		[min]	15	20	25	35	45	50	55
Static friction torque		[ $\mathrm{N} \cdot \mathrm{m}]$	0.13	0.18	0.20	0.16	0.21	0.40	0.50
Armature coil temperature upper limit degree			100						
Motor end detector			Resolution per motor rotation E51/A51: 1,000,000 pulse/rev, E42/A42: 100,000 pulse/rev						
Structure			Fully closed, self-cooling (protective degree: IP65, IP67)						
Environment conditions			To follow section "2.12 Environment conditions"						
Weight Without/with brake [kg]			5.0/7.5	7.0/9.0	9.0/11	12/18	19/25	25/30	32/38
			Class F						

(Note 1) The above characteristics values are representative values. The maximum current and maximum torque are the values when combined with the drive unit.
(Note 2) The values in parentheses are for combination with the $S$ type drive unit.

Motor model			HC**RSeries $\quad 3000 \mathrm{r} / \mathrm{min}$ rating)				
			INC specifications: HC**R-E51/-E42/-E33,   ABS specifications: HC * * R-A51/-A42/-A33				
			HC103R	HC153R	HC203R	HC353R	HC503R
	Rated output	[kW]	1.0	1.5	2.0	3.5	5.0
	Rated current	[A]	6.1	8.8	14.0	22.5	28.0
	Stall current	[A]	6.1	8.8	14.0	22.5	28.0
	Rated torque ( $\pm 10 \%$ )	[ $\mathrm{N} \cdot \mathrm{m}$ ]	3.18	4.77	6.37	11.1	15.9
	Stall torque ( $\pm 10 \%$ )	[ $\mathrm{N} \cdot \mathrm{m}$ ]	3.18	4.77	6.37	11.1	15.9
Rated rotation speed		[r/min]	3000				
Maximum rotation speed		[r/min]	3000				
Maximum current		[A]	18.4	23.4	37.0	56.3	70.0
Maximum torque ( $\pm 10 \%$ )		[ $\mathrm{N} \cdot \mathrm{m}$ ]	7.95	11.9	15.9	27.8	39.8
Power rate at continuous rated torque		[kW/s]	67.4	120	176	150	211
Instantaneous angle acceleration		$\left[\mathrm{rad} / \mathrm{s}^{2}\right]$	53000	62894	69239	33557	33157
Motor inertia		$\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	1.5	1.9	2.3	8.3	12.0
Motor inertia with brake		$\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$	1.9	2.3	2.7	11.8	15.5
Recommended motor shaft conversion load inertia rate			5 times or less of motor inertia				
Armature resistance (phase $20^{\circ} \mathrm{C}$ )		[ $\Omega$ ]	0.43	0.28	0.15	0.057	0.044
Armature inductance (phase $20^{\circ} \mathrm{C}$ )		[mH]	7.7	5.8	3.3	2.2	1.9
Inductive voltage constant (phase $20^{\circ} \mathrm{C}, \pm 10 \%$ )		[mV/r/min]	35.1	36.5	31.6	31.3	35.6
Torque constant ( $\pm 10 \%$ )		[ $\mathrm{N} \cdot \mathrm{m} / \mathrm{A}$ ]	5.9	6.2	5.3	5.3	6.0
Electrical time constant		[ms]	9.1	10.2	10.7	19.3	21.0
Mechanical time constant		[ms]	0.57	0.44	0.38	0.53	0.46
Thermal time constant		[min]	15	15	15	35	40
Static friction torque		[ $\mathrm{N} \cdot \mathrm{m}$ ]	0.07	0.09	0.09	0.12	0.16
Armature coil temperature upper limit degree			100				
Motor end detector			Resolution per motor rotation   E51/A51: 1000000 pulse/rev, E42/A42: 100000 pulse/rev,   E33/A33: 25000 pulse/rev				
Structure			Fully closed, self-cooling (protective degree: IP65, IP67)				
Environment conditions			To follow section "2.12 Environment conditions"				
Weight	Without/with brake	[kg]	3.9/6.0	5.0/7.0	6.2/8.3	12/15	17/21
Armature insulation class			Class F				

(Note 1) The above characteristics values are representative values. The maximum current and maximum torque are the values when combined with the drive unit.
(2) HA Series

Standard motor data sheet (2000 r/min)

Item			Symbo I	Unit	HA40N	HA80N	HA100N	HA200N	HA300N	HA700N	HA900N
Nominal output			$\mathrm{P}_{\mathrm{R}}$	kW	0.5	1.0	2.0	3.5	4.5	7.0	9.0
	Rated speed	Output torque	$\mathrm{T}_{\mathrm{R}}$	$N \cdot \mathrm{~m}$	2.39	4.78	9.55	16.7	21.5	33.4	43.0
		Input current	$I_{R}$	A	3.0	5.5	10	16	22	33.5	42
	Stall state	Output torque	$\mathrm{T}_{\mathrm{S}}$	$N \cdot \mathrm{~m}$	2.94	5.88	13.7	22.6	37.3	49.0	58.8
		Input current	$\mathrm{L}_{\text {s }}$	A	3.6	6.6	14	22	37	49	56
	Maximum character -istics in stall state	Instantaneous torque	$\mathrm{T}_{\text {PS }}$	$\mathrm{N} \cdot \mathrm{m}$	14.7	29.4	68.6	112.7	186	245	294
		Instantaneous current	$I_{P}$	A	18	33	70	110	185	245	280
		Instantaneous power rate	$Q_{P}$	kW/s	220	440	686	967	1805	2364	2713
		Instantaneous angular acceleration	$\mathrm{a}_{\mathrm{P}}$	$\mathrm{rad} / \mathrm{s}^{2}$	15000	15000	10000	8582	9694	9652	9230
Rated speed			Nmax	$\mathrm{r} / \mathrm{min}$	2000						
Motor GD ${ }^{2}$			$\mathrm{GD}^{2}{ }_{\mathrm{M}}$	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	39.2	78.4	274	525	768	1015	1274
Motor inertia			$\mathrm{J}_{\mathrm{M}}$	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	9.8	19.6	68.6	131.0	192.0	254.0	318.5
Armature resistance (one phase, $20^{\circ} \mathrm{C}$ )			Ra	$\Omega$	2.23	0.89	0.31	0.136	0.067	0.058	0.045
Armature inductance (one phase)			La	mH	9.6	4.9	3.6	1.8	1.1	0.86	0.8
Induced voltage constant (one phase, $20^{\circ} \mathrm{C}$ )			$\mathrm{K}_{\mathrm{E}}$	$\begin{gathered} \hline \mathrm{mV} / \mathrm{r} / \mathrm{min} \\ \pm 10 \% \end{gathered}$	29.2	32	34.9	36.7	35.8	37	38
Torque constant			$\mathrm{K}_{\mathrm{T}}$	N.m/A	0.83	0.91	1.00	1.05	1.03	1.06	1.09
Electrical time constant			te	ms	4.3	5.5	11.6	13	16	14.8	17.8
Mechanical time constant			tm	ms	9.4	6.2	6.4	4.9	3.7	4.0	3.3
Thermal time constant			tth	min	40	45	60	65	65	65	65
Static frictional torque			$\mathrm{T}_{\mathrm{F}}$	N.m	0.108	0.157	0.137	0.216	0.294	0.373	0.686
Armature winding temperature rise limit			$\theta \max$	${ }^{\circ} \mathrm{C}$				130			
Weight (motor only)			-	kg	7	11	20	31	42	55	79
Armature insulation class					Class F						

Standard motor data sheet ( $3000 \mathrm{r} / \mathrm{min}$ )

Item			Symbo I	Unit	HA053N	HAITN	HAZ2N	HA33N	HAASN	HABAN	HA103N	HA203N	HA303N	HA703N
Nominal output			$\mathrm{P}_{\mathrm{R}}$	kW	0.05	0.1	0.3	0.45	0.5	1.0	2.0	3.5	4.5	7.0
	Rated speed	Output torque	$\mathrm{T}_{\mathrm{R}}$	$N \cdot m$	0.16	0.32	0.95	1.43	1.60	3.19	6.37	11.2	14.3	22.3
		Input current	$I_{\text {R }}$	A	0.95	0.95	2.9	2.2	2.8	4.9	9.2	18	21	31
	Stall state	Output torque	$\mathrm{T}_{\mathrm{S}}$	N•m	0.25	0.49	0.98	1.96	2.94	5.88	13.7	22.6	37.3	49.0
		Input current	$L_{s}$	A	1.4	1.4	3.0	3.0	5	8.8	19.6	34.5	55	68
	Maximum character -istics in stall state	Instantaneous torque	$\mathrm{T}_{\mathrm{PS}}$	$N \cdot m$	1.22	2.45	4.9	9.8	15.7	29.4	68.6	113	186	245
		Instantaneous current	$1 p$	A	7.0	7.0	15	15	25	44	98	127.5	275	340
		Instantaneous power rate	$Q_{P}$	kW/s	81.4	167.0	24500	490	220	440	686	967	1805	2364
		Instantaneous angular acceleration	$\mathrm{a}_{\mathrm{p}}$	$\mathrm{rad} / \mathrm{s}^{2}$	66490	68490	50000	50000	15000	15000	10000	8582	9694	9652
Rated speed			Nmax	$\mathrm{r} / \mathrm{min}$	3000									
Motor GD ${ }^{2}$			$\mathrm{GD}^{2}{ }_{\mathrm{M}}$	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.74	1.43	3.92	7.84	39.2	78.4	274	525	768	1015
Motor inertia			$J_{M}$	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	0.18	0.36	0.98	1.96	9.8	19.6	68.6	131.0	192.0	254.0
Armature resistance (one phase, $20^{\circ} \mathrm{C}$ )			Ra	$\Omega$	7.2	9.3	2.22	3.0	1.16	0.5	0.18	0.052	0.0316	0.0244
Armature inductance (one phase)			La	mH	6.4	10.8	4.4	8.7	5	2.8	2.1	0.72	0.46	0.42
Induced voltage constant (one phase, $20^{\circ} \mathrm{C}$ )			$\mathrm{K}_{\mathrm{E}}$	$\begin{gathered} \mathrm{mV} / \mathrm{r} / \mathrm{min} \\ \pm 10 \% \end{gathered}$	6.2	12.4	12.1	24.2	21	23.9	24.8	23	24.5	25.8
Torque constant			$\mathrm{K}_{\mathrm{T}}$	$\mathrm{N} \cdot \mathrm{m} / \mathrm{A}$	0.18	0.35	0.34	0.69	0.60	0.69	0.71	0.66	0.71	0.75
Electrical time constant			te	ms	0.89	1.16	2.0	2.9	4.3	5.6	11.7	14	15	17
Mechanical time constant			tm	ms	12.8	8.0	5.5	3.7	9.5	6.3	7.4	4.6	3.7	3.4
Thermal time constant			tth	min	10	10	20	25	40	45	60	65	65	65
Static frictional torque			$\mathrm{T}_{\mathrm{F}}$	$\mathrm{N} \cdot \mathrm{m}$	0.005	0.007	0.039	0.059	0.108	0.157	0.137	0.216	0.294	0.373
Armature winding temperature rise limit			$\theta$ max	${ }^{\circ} \mathrm{C}$	130									
Weight (motor only)			-	kg	1.1	1.5	2.0	3.0	7	11	20	31	42	55
Armature insulation class					Class F									

Low inertia AC servomotor data sheet ( $2000 \mathrm{r} / \mathrm{min}$ )

Item			Symbo I	Unit	$\begin{aligned} & \text { HA50LC- } \\ & \text { SOSOC- } \\ & \text { HS } \end{aligned}$	HA100LCS HA100LCE	HA150LCS HA150CCE	$\begin{aligned} & \text { HA200 } \\ & \text { LC-S } \end{aligned}$	HA300 LC-S	HA500 LC-S	$\underset{\text { K2-LH11 }}{\substack{\text { H2-S1 }}}$	$\underset{\text { KA-L-S15 }}{\text { K2 }}$
Nominal output			$\mathrm{P}_{\mathrm{R}}$	kW	0.5	1.0	1.5	2.0	3.0	5.0	11.0	15.0
	Rated speed	Output torque	$\mathrm{T}_{\mathrm{R}}$	$N \cdot \mathrm{~m}$	2.39	4.78	7.16	9.55	14.3	23.8	52.5	71.6
		Input current	$I_{R}$	A	3.4	6.8	9.5	13	16	28	68.0	78.0
	Stall state	Output torque	$\mathrm{T}_{\mathrm{S}}$	$\mathrm{N} \cdot \mathrm{m}$	2.94	5.88	8.83	13.7	22.6	37.3	70.6	91.7
		Input current	$L_{s}$	A	4	8	11.5	18.2	25	44	84.0	100.0
	Maximum character -istics in stall state	Instantaneous torque	$\mathrm{T}_{\mathrm{PS}}$	$N \cdot m$	14.7	29.4	44.1	68.6	112.7	186	353	490
		Instantaneous current	$1 p$	A	20	40	57.5	91	125	220	420	500
		Instantaneous power rate	$Q_{P}$	kW/s	788	1575	2362	2401	4320	3931	235	177
		Instantaneous angular acceleration	$\mathrm{a}_{\mathrm{p}}$	$\mathrm{rad} / \mathrm{s}^{2}$	53571	53571	53571	35000	38333	21111	30000	16892
Rated speed			Nmax	$\mathrm{r} / \mathrm{min}$	2000							
Motor GD ${ }^{2}$			$\mathrm{GD}^{2}{ }_{\mathrm{M}}$	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	11	22	33	78.4	117.6	352.8	470	1160
Motor inertia			$J_{M}$	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	2.75	5.49	8.24	19.6	29.4	88.3	118.0	290.0
Armature resistance (one phase, $20^{\circ} \mathrm{C}$ )			Ra	$\Omega$	1.36	0.484	0.29	0.143	0.112	0.041	0.03	0.026
Armature inductance (one phase)			La	mH	7.3	3.4	3.4	1.43	1.37	0.74	0.43	0.40
Induced voltage constant (one phase, $20^{\circ} \mathrm{C}$ )			$\mathrm{K}_{\mathrm{E}}$	$\begin{gathered} \mathrm{mV} / \mathrm{r} / \mathrm{min} \\ \pm 10 \% \end{gathered}$	27	26	27	26.5	32	30	29.6	34.3
Torque constant			$\mathrm{K}_{\mathrm{T}}$	$\mathrm{N} \cdot \mathrm{m} / \mathrm{A}$	0.76	0.75	0.77	0.76	0.91	0.85	0.84	0.98
Electrical time constant			te	ms	5.4	7.0	8.3	10	12.3	18	14.4	15.6
Mechanical time constant			tm	ms	1.9	1.4	1.2	1.5	1.2	1.5	1.6	2.32
Thermal time constant			tth	min	40	45	45	60	65	65	30	30
Static frictional torque			$\mathrm{T}_{\mathrm{F}}$	$\mathrm{N} \cdot \mathrm{m}$	0.108	0.157	0.206	0.294	0.392	0.490	0.412	0.539
Armature winding temperature rise limit			$\theta$ max	${ }^{\circ} \mathrm{C}$								
Weight			-	kg	6.5	9.5	12.5	16	22	35	70	108

* The same characteristics apply to the HA **NLC motor.

Low inertia AC servomotor data sheet ( $3000 \mathrm{r} / \mathrm{min}$ )

Item			Symbo I	Unit	HA53LC-S HA53LC-TS	HA103LC-S HA103LC-T S	$\begin{aligned} & \text { HA153LC-S } \\ & \text { HA153LC-T } \\ & \mathrm{S} \\ & \hline \end{aligned}$	HA203LC-S	HA303LC-S	HA503LC-S
Nominal output			$\mathrm{P}_{\mathrm{R}}$	kW	0.5	1.0	1.5	2.0	3.0	5.0
	Rated speed	Output torque	TR	$N \cdot m$	1.60	3.19	4.77	6.36	9.55	16.0
		Input current	$I_{R}$	A	3.5	6.5	9.6	11.0	15.2	26.0
	Stall state	Output torque	Ts	N•m	2.94	5.88	8.82	13.7	22.5	37.3
		Input current	$L_{s}$	A	5.8	11.0	16.2	21	32	54
	Maximum character -istics in stall state	Instantaneous torque	$\mathrm{T}_{\mathrm{PS}}$	N•m	14.7	29.4	44.1	68.6	112.7	186
		Instantaneous current	$1 p$	A	29	55	81	105	160	270
		Instantaneous power rate	$Q_{P}$	kW/s	788	1575	2362	2401	4320	3930
		Instantaneous angular acceleration	$\mathrm{a}_{\mathrm{P}}$	$\mathrm{rad} / \mathrm{s}^{2}$	53571	53571	53571	35000	38333	21111
Rated speed			Nmax	$\mathrm{r} / \mathrm{min}$	3000					
Motor GD ${ }^{2}$			$\mathrm{GD}^{2}{ }_{\mathrm{M}}$	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	11	22	33	78.4	117.6	352.8
Motor inertia			$J_{M}$	$\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}$	2.7	5.5	8.2	19.6	29.4	88.3
Armature resistance (one phase, $20^{\circ} \mathrm{C}$ )			Ra	$\Omega$	0.6	0.25	0.142	0.11	0.066	0.0289
Armature inductance (one phase)			La	mH	3.2	1.7	1.14	1.0	0.77	0.49
Induced voltage constant (one phase, $20^{\circ} \mathrm{C}$ )			$\mathrm{K}_{\mathrm{E}}$	$\begin{gathered} \mathrm{mV} / \mathrm{r} / \mathrm{min} \\ \pm 10 \% \end{gathered}$	18.5	19.8	20.0	24.2	25.2	25.5
Torque constant			$\mathrm{K}_{\mathrm{T}}$	$\mathrm{N} \cdot \mathrm{m} / \mathrm{A}$	0.53	0.57	0.57	0.69	0.72	0.73
Electrical time constant			te	ms	5.4	6.8	8.1	9.1	11.7	17.0
Mechanical time constant			tm	ms	1.8	1.3	1.1	1.4	1.1	1.5
Thermal time constant			tth	min	40	45	45	60	65	65
Static frictional torque			$\mathrm{T}_{\mathrm{F}}$	$\mathrm{N} \cdot \mathrm{m}$	0.108	0.157	0.206	0.294	0.392	0.490
Armature winding temperature rise limit			$\theta$ max	${ }^{\circ} \mathrm{C}$	130					
Weight			-	kg	6.5	9.5	12.5	16	22	35

* The same characteristics apply to the HA **NLC motor.


### 2.5 Torque characteristics

## (1) HC Series



Note 1: The above graphs show the data for the input voltage of 200VAC.
When the input voltage is 200VAC or less, the short time operation range is limited.
Note 2: The broken line indicates the torque when connecting to $S$ type drive unit.


Note 1: The above graphs show the data for the input voltage of 200VAC.
When the input voltage is 200VAC or less, the short time operation range is limited.
Note 2: The broken line indicates the torque when correcting to $S$ type drive unit.
(2) HA Series


* The above graphs show the data for the input voltage of 200VAC.


[HA703N]

* The above graphs show the data for the input voltage of 200VAC.

* The above graphs show the data for the input voltage of 200VAC.

* The above graphs show the data for the input voltage of 200VAC.


When using a combination of the HA-LH15K2-S1 and V1-150, the short time operation range is further subdivided by the operation time.
(Note) The above torque characteristics are for a 200 V power voltage.
These characteristics are not guaranteed when the power voltage drops.

### 2.6 Duty drive characteristics

The duty-drive characteristics are calculated from the motor's armature coil temperature upper limit degree and the thermal constants. The output limit characteristics for the motor during rotation are expressed. If this limit is exceeded, the motor's thermal protect will be activated and motor overheat (ALM46) will be detected.
In the actual servo system, the electronic thermal protection control is carried out inside the servo drive unit with software operation, so this characteristic may be limited by the servo drive unit.

(1) HC Series, HC**R Series


(2) HA Series


### 2.7 Outline dimension drawings

(1) HC Series

- HC52(B)S - HC52(B)T
- HC102(B)S • HC102(B)T
- HC152(B)S
- HC53(B)S
- HC53(B)T
- HC103(B)S
- HC103(B)T
- HC153(B)S
- HC153(B)T
[Unit:mm]


Detector connector
MS3102A22-14P


Pin	Signal
$A$	
$B$	
C	
D	
E	BT
F	
G	
H	SD
J	SD
K	RQ
L	RQ
M	
N	SD
P	
R	5 G
S	+5 V
T	
U	
V	



A-A Power
The detector connector is common for all HC Series.

Motor model		L (Note 1)	KL
2000r/min	$3000 \mathrm{r} / \mathrm{min}$		
HC52(B) $\square$	HC53(B) $\square$	$125(158)$	51.5
HC102(B) $\square$	HC103(B) $\square$	$150(183)$	76.5
HC152(B) $\square$	HC153(B) $\square$	$175(208)$	101.5

Note 1. The dimensions given in parentheses are for when magnetic brakes are provided.
Note 2. Use a friction coupling (Spun ring, etc.) to connect with the load.

```
- HC202S
- HC203S
[Unit:mm]

\begin{tabular}{|c|c||c|c|}
\hline \multicolumn{2}{|c|}{ Motor model } & \(L\) & \multirow{2}{*}{KL} \\
\hline \hline \(2000 \mathrm{r} / \mathrm{min}\) & \(3000 \mathrm{r} / \mathrm{min}\) & & \\
\hline \hline HC202S & HC203S & 150 & 69 \\
\hline HC352S & HC353S & 192 & 111 \\
\hline HC452S & - & 234 & 153 \\
\hline
\end{tabular}

Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load.
```

- HC202BS
- HC352BS
- HC452BS
- HC203BS • HC353BS
- HC203BS
- HC353BS

```

[Unit:mm]

Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load.
- HC702S
- HC453S
[Unit:mm]

\begin{tabular}{|c|c||c|c|}
\hline \multicolumn{2}{|c|}{ Motor model } & L & KL \\
\hline \(2000 \mathrm{r} / \mathrm{min}\) & \(3000 \mathrm{r} / \mathrm{min}\) & & \\
\hline \hline- & HC453S & 234 & 148 \\
\hline HC702S & HC703S & 297 & 211 \\
\hline
\end{tabular}

Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load.
Note 2. Only HC702S and HC703S have screw holes for hanging bolt (M8).

- HC702BS
- HC453BS
- HC703BS
[Unit:mm]
\begin{tabular}{|c|c||c|c|}
\hline \multicolumn{2}{|c|}{ Motor model } & \(L\) & \multirow{2}{c|}{LL} \\
\hline \(2000 \mathrm{r} / \mathrm{min}\) & \(3000 \mathrm{r} / \mathrm{min}\) & & \\
\hline \hline- & HC453BS & 282 & 148 \\
\hline HC702BS & HC703BS & 345 & 211 \\
\hline
\end{tabular}

Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load.
Note 2. Only HC702BS and HC703BS have screw holes for hanging bolt (M8).
[Unit:mm]

Note 1. Use a friction coupling (Spun ring, etc.) to connect with the load.
Note 2. These are screw holes for hanging bolt (M8).
- HC902BS

[Unit:mm]

Note 2. These are screw holes for hanging bolt (M8).

\section*{(2) \(\mathrm{HC} * * \mathbf{R}\) Series}
- HC103R(B)S • HC103R(B)T
- HC153R(B)S • HC153R(B)T
- HC203R(B)S • HC203R(B)T
[Unit:mm]

\begin{tabular}{|c||c|c|}
\hline Motor model & L (Note 1) & KL \\
\hline \hline HC103R(B) \(\square\) & \(152(189)\) & 71 \\
\hline\(H C 153 R(B) \square\) & \(177(214)\) & 96 \\
\hline HC203R(B) \(\square\) & \(202(239)\) & 121 \\
\hline
\end{tabular}

Note 1. The dimensions given in parentheses are for when magnetic brakes are provided
Note 2. Use a friction coupling (Spun ring, etc.) to connect with the load.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{Power connector CE05-2A22-23P} & Pin & Signal \\
\hline & A & U \\
\hline & B & V \\
\hline 1 & C & W \\
\hline \(\mathrm{GO}^{\text {a }}\) & D & ¢ Ground \\
\hline \(\mathrm{FO} \mathrm{O}^{\mathrm{H}} \mathrm{O}^{\mathrm{B}}\) & E & \\
\hline \(\bigcirc\) & F & \\
\hline & G & B1 \\
\hline \multicolumn{3}{|l|}{B 1 and B2 are the brake terminals.} \\
\hline \multicolumn{3}{|l|}{(Only for motor with brakes.)} \\
\hline \multicolumn{3}{|l|}{There is no need for concern regarding} \\
\hline
\end{tabular}
- HC353R(B)S
- HC503R(B)S

\begin{tabular}{|c||c|c|}
\hline Motor model & L (Note 1) & KL \\
\hline \hline HC353R(B)S & \(222(258)\) & 148 \\
\hline HC503R(B)S & \(279(315)\) & 205 \\
\hline
\end{tabular}

Note 1. The dimensions given in parentheses are for when magnetic brakes are provided.
Note 2. Use a friction coupling (Spun ring, etc.) to connect with the load.
Note 3. Only for models with electromagnetic brakes.

B1 and B2 are the brake terminals (Only for motor with brakes.) There is no need for concern regarding the polarity when supplying 24VDC.
(3) HA Series

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Encoder } \\
\hline INC & OSE104, OSE105 \\
\hline ABS & OSA104, OSA105 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Motor model} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Dimen- } \\
\text { sions } \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{Weight} & \multirow[t]{2}{*}{Tolerable shaft end radial load (kg)} & \multirow[t]{2}{*}{Shaft shape} & \multirow[t]{2}{*}{Electromagnetic brake} \\
\hline & A & B & & & & \\
\hline HA100NC-S.HA103NC-S & 260 & 179 & 21 kg & \multirow[t]{6}{*}{210} & \multirow[t]{6}{*}{Straight shaft} & \multirow[t]{3}{*}{None} \\
\hline HA200NC-S.HA203NC-S & 328 & 247 & 32 kg & & & \\
\hline HA300NC-S & 396 & 315 & 42kg & & & \\
\hline HA100NCB-S.HA103NCB-S & 336 & 179 & 27 kg & & & \(29.4 \mathrm{~N} \cdot \mathrm{~m}\) \\
\hline HA200NCB-S.HA203NCB-S & 404 & 247 & 38 kg & & & with \\
\hline HA300NCB-S & 472 & 315 & 47 kg & & & 24VDC \\
\hline
\end{tabular}
Notes: 1. It is recommended that the cannon connector be mounted in a downward orientation
to improve its splash-proof performance.
2. The wiring side plug is optional. It is only provided when ordation.
3. Holes marked with * are screw holes for eyebolt M8 installation.
<With brake>

\begin{tabular}{l}
Motor connector \\
C E 05-2A24-10 \\
\hline
\end{tabular}

\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Motor model } & \multicolumn{2}{|c|}{\begin{tabular}{c}
Dimen- \\
sions
\end{tabular}} & \multirow{2}{*}{ Weight } & \begin{tabular}{c}
Tolerable shaft \\
end radial load \\
(kg)
\end{tabular} & \begin{tabular}{c}
Shaft \\
shape
\end{tabular} & \begin{tabular}{c}
Electro- \\
magnetic \\
brake
\end{tabular} \\
\hline & A & B & & & & \\
\hline HA303N-SR & 395 & 280 & 43 kg & & \multirow{2}{*}{210} & \multirow{2}{*}{\begin{tabular}{c}
Straight \\
shaft
\end{tabular}} \\
\hline HA700N-SR•HA703N-SR & 479 & 364 & 56 kg & \begin{tabular}{c}
\(29.4 \mathrm{~N} \cdot \mathrm{~m}\) \\
with \(24 V D C\)
\end{tabular} \\
\hline HA303NB-SR & 472 & 280 & 49 kg & & & \\
\hline HA700NB-SR•HA703NB-SR & 556 & 364 & 62 kg & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Motor model} & \multicolumn{2}{|l|}{Dimensions} & \multirow[t]{2}{*}{Weight} & \multirow[t]{2}{*}{Tolerable shaft end radial load (kg)} & \multirow[t]{2}{*}{Shaft shape} & \multirow[t]{2}{*}{Electromagnetic brake} \\
\hline & A & B & & & & \\
\hline HA900N-SR & 565 & 450 & 79 kg & & & None \\
\hline HA900NB-SR & 642 & 450 & 85kg & 250 & shaft & \[
29.4 \mathrm{~N} \cdot \mathrm{~m}
\]
\[
\text { with } 24 \mathrm{VDC}
\] \\
\hline
\end{tabular}

The motor terminal box lead outlet direction can be changed forward/backward/right/left with a \(90^{\circ}\) angle.
A steel sealed type terminal box is used.

Notes: 1. It is recommended that the cannon connector be mounted in a downward orientation to improve its splash-proof performance.
2. The wiring side plug is optional. It is only provided when ordered.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Motor model} & \multicolumn{2}{|l|}{Dimensions A} & \multirow[t]{2}{*}{Dimensions B} & \multirow[t]{2}{*}{Weight} & \multirow[t]{2}{*}{Tolerable shaft end radial load} & \multirow[t]{2}{*}{Shaft shape} \\
\hline & \begin{tabular}{l}
\[
\overline{\mathrm{OHE} / \mathrm{OHA}}
\] \\
type
\end{tabular} & \[
\begin{gathered}
\hline \text { OSE/OSA } \\
\text { type }
\end{gathered}
\] & & & & \\
\hline HA503L-SR & 363 & 338 & 245 & 35 kg & \multirow[t]{2}{*}{250 kg} & Straight shaft \\
\hline HA503NL-SR & ---- & 338 & 245 & 35 kg & & Straight shaft \\
\hline
\end{tabular}

HA-LH11K2-S1, HA-LH15K2-S1
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{Model} & \multicolumn{15}{|l|}{Motor} & \multicolumn{4}{|l|}{Shaft end} & \multirow[t]{2}{*}{Weight (kg)} \\
\hline & F & L & LA & LB & LC & LD & LG & LL & LT & KL & KH & IE & IF & Hanging bolt & E & LR & Q & S & Oil seal & \\
\hline HA-LH11K2-S1 & 208 & 614 & 215 & 180 & 250 & 204 & 20 & 529 & 316 & 478 & 102 & 152 & 317 & M10 & 3 & 85 & 80 & 42h6 & S45629B & 70 \\
\hline HA-LH15K2-S1 & 254 & 688 & 265 & 230 & 300 & 250 & 25 & 578 & 365 & 527 & 117 & 180 & 376 & M12 & 5 & 110 & 100 & 55m6 & S60829B & 108 \\
\hline
\end{tabular}

\footnotetext{
(Notes) 1. Leave 30 mm or more between the cooling fan and wall.
3. When removing the hanging bolts and using the motor, plug the screw holes with
bolts.
4. This motor is equivalent to IP44, so take care to oil
}
OHA-LH11K2B-S2, HA-LH15K2B-S2

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{Model} & \multicolumn{15}{|l|}{Motor} & \multicolumn{4}{|l|}{Shaft end} & \multirow[t]{2}{*}{Weight (kg)} \\
\hline & F & LA & LB & LC & LD & LG & LL & LT & KL & KH & ID & IE & IF & Hanging bolt & E & LR & Q & S & Oil seal & \\
\hline HA-LH11K2B-S2 & 208 & 215 & 180 & 250 & 204 & 20 & 594 & 379 & 543 & 102 & 140 & 152 & 317 & M10 & 3 & 85 & 80 & 42h6 & S45629B & 80 \\
\hline HA-LH15K2B-S2 & 254 & 265 & 230 & 300 & 250 & 25 & 658 & 442 & 607 & 117 & 158 & 180 & 376 & M12 & 5 & 110 & 100 & 55 m 6 & S60829B & 128 \\
\hline
\end{tabular}

\footnotetext{
(Notes)1. Leave 50 mm or more between the intake air side of the motor and wall.
When removing the hanging bolts and using the motor, plug the screw holes with the following bolts HA-LH11K2B-S2: M10×15 or less
3. Use a friction coupling (spun ring, etc.) for the coupling with the load.
4. There are a total of 5 lead-out wires inside the terminal box: \(\mathrm{U}, \mathrm{V}\) and W wires and two fan wires.
}

\section*{2．8 Motor connection}

WARNING
Always insulate the connection section of the power supply terminal．Failure to do so could lead to electric shocks．

\section*{1．CAUTION}

Do not directly connect commercial power supply to the servomotor．Doing so could lead to faults．
（a）Always match the power lead phases（ \(\mathrm{A}, \mathrm{B}, \mathrm{C}\) ）and the drive unit output terminal（ \(\mathrm{U}, \mathrm{V}, \mathrm{W}\) ）phases．
（b）Application of commercial power supply to the motor terminals（ \(\mathrm{U}, \mathrm{V}, \mathrm{W}\) ）could cause the motor to demagnetize or burn．
The commercial power can be connected only to the servo drive unit output terminals（ \(\mathrm{U}, \mathrm{V}, \mathrm{W}\) ）．
（c）Always ground with the grounding terminal \(E\) ．Connect to the grounding terminal of the servo drive unit，and ground to the earth with the grounding plate in the control box．（Refer to＂Servo and Spindle System Configuration Section 4 Connection of each unit＂．）
（d）Supply 24VDC user－prepared（refer to＂2．9 Motors with electromagnetic brake＂）to the brake lead of the motor with magnetic brake．
The internal power supply VDD（24VDC）in the servo drive unit cannot be used．
（1）Cannon plugs to be used
＊Cannon plugs for HC motor series are shown in＂2．7 Outline dimension drawings＂．
\begin{tabular}{|c|c|c|c|}
\hline & & 使 用 す Canỉon plpg to be used ン プ & ラ グ \\
\hline \[
\begin{aligned}
& \text { HA053C } \\
& \text { HA13C } \\
& \text { HA23NC } \\
& \text { HA33NC }
\end{aligned}
\] & & & \\
\hline \begin{tabular}{l}
HA40NC \\
HA43NC \\
HA80NC \\
HA83NC \\
HA50NLC \\
HA100NLC \\
HA150NLC \\
HA53NLC \\
HA103NLC \\
HA153NLC
\end{tabular} & \[
\begin{aligned}
& \left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right. \\
& \text { CE05-2A22-23P }
\end{aligned}
\] & & \\
\hline HA100NC HA200NC HA300NC HA103NC HA203NC HA200NLC HA300NLC HA500NLC HA203NLC HA303NLC & & & \\
\hline \[
\begin{aligned}
& \text { HA053CB } \\
& \text { HA13CB } \\
& \text { HA23NCB } \\
& \text { HA33NCB }
\end{aligned}
\] & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Motor model & Motor side connector & \multicolumn{2}{|l|}{Cannon plug to be used} \\
\hline \[
\begin{aligned}
& \text { HA40NCB } \\
& \text { HA43NCB } \\
& \text { HA80NCB } \\
& \text { HA83NCB }
\end{aligned}
\] & & \begin{tabular}{l}
※ Indicates "DC OFF" \\
To drike P unit
\end{tabular} & M S 3102 A 18-12P
\begin{tabular}{|c|c|c|}
\hline Pin No. & Lead side \\
\hline A & U & U \\
B & \begin{tabular}{l}
Motor \\
B
\end{tabular} & W
\end{tabular} winding \\
\hline HA100NCB HA200NCB HA300NCB HA103NCB HA203NCB & & & \\
\hline
\end{tabular}

Notes 1. The angle plug (MS3108), straight plug (MS3106), cable clamp (MS3057), and wiring connector should be selected by user.
2. The key position of the cannon connector should be in the direction of the motor flange.
3. Refer to the following table for the European

Standards compliant parts.

\section*{Cannon connector list}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Compatible motor} & Cannon & Standard connector & \multicolumn{3}{|c|}{European Standards compliant connector} \\
\hline & Type & Plug (with back shell) & Plug (with back shell) & Cable clamp & Plug (single block) \\
\hline \multirow[t]{2}{*}{HA053-33} & Straight, & US3106A18-12S & CE05-6A18-12SD-B-BSS & \multirow[t]{2}{*}{CE3057-10A-D (D265)} & CE05-6A18-12SD-B \\
\hline & Angle & MS3108B18-12S & CE05-8A18-12SD-B-BAS & & -------- \\
\hline \multirow[t]{2}{*}{HA40-80} & Straight & HS3106A22-23S & CE05-6A22-23SD-B-BSS & \multirow[t]{2}{*}{CE3057-12A-D(D265)} & CE05-6A22-23SD-B \\
\hline & Angle & US3108B22-23S & CE05-8A22-23SD-B-BAS & & --------- \\
\hline \multirow[t]{2}{*}{HA100-300} & Straight & MS3106A24-10S & CE05-6A24-10SD-B-BSS & \multirow[t]{2}{*}{CE3057-16A-■ (D265)} & CE05-6A24-10SD-B \\
\hline & Angle & -S3108B24-10S & CE05-8A24-10SD-B-BAS & & - - - - - - - \\
\hline
\end{tabular}
* Use the cannon plug single block together with a conduit, etc.

\section*{(2) Terminal box type motors}

Models applicable: HA700N-SR, HA900N-SR, HA303N-SR, HA703N-SR, HA700NB-SR, HA900NB-SR, HA303NB-SR, HA703NB-SR, HA503NL-SR

Motor terminal box detailed drawing

- The direction of the \(\varnothing \mathrm{D}\) hole of the terminal box can be changed every \(90^{\circ}\).

However, since the øD hole is positioned as shown in the outline dimension drawing when shipping, remove the screw marked with \(*\) when the direction should be changed.
- When a spare part is required due to damage, the part should be ordered from Mitsubishi Electric along with the parts number listed in the drawing.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{ Dimensions } & \multicolumn{2}{|c|}{ Model } \\
\hline Model & A & B & C & D & E & F & G & \begin{tabular}{c}
Terminal box \\
cover
\end{tabular} & \begin{tabular}{c}
Terminal box \\
base
\end{tabular} \\
\hline \begin{tabular}{l}
HA700N, HA700NB \\
HA900N, HA900NB
\end{tabular} & & & & & & & & \\
\begin{tabular}{l}
HA303N, HA303NB \\
HA703N, HA703NB \\
HA503NL
\end{tabular} & 131 & 144 & 78 & 35 & 37 & 60 & 76 & M953C771H01 & M952B407H20 \\
\hline
\end{tabular}

Types of terminal box lead wires
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Servomotor } \\
\hline Lead wire type & \multicolumn{2}{|c|}{\(\begin{array}{c}\text { Lead wire crimp } \\
\text { terminal }\end{array}\)} \\
\hline Item & \(\begin{array}{c}\text { Indica- } \\
\text { tion }\end{array}\) & \(\begin{array}{l}\text { HA700/90 } \\
\text { 0 }\end{array}\) & \(\begin{array}{l}\text { HA503NL } \\
\text { HA303/70 } \\
3\end{array}\)
\end{tabular} \(\left.\begin{array}{l}\text { HALH11K } \\
\text { HALH15K }\end{array}\right]\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Servo drive unit} \\
\hline \[
\underset{\text { al }}{\substack{\text { Termin }}}
\] & \[
\begin{array}{|r|}
\hline \mathrm{C} 1-\mathrm{V} 1-01 \\
03 \\
05 \\
\hline
\end{array}
\] & \[
\begin{array}{|r|}
\hline \mathrm{C} 1-\mathrm{V} 1-10 \\
20 \\
30 \\
\hline
\end{array}
\] & C1-V1-45 & \[
\begin{array}{|r|}
\hline \mathrm{C} 1-\mathrm{V} 1-70 \\
90
\end{array}
\] & \[
\begin{array}{cc}
\hline \mathrm{C} 1-\mathrm{V} 1-11 \\
0 & \\
150
\end{array}
\] \\
\hline L+ & M6 & M6 & M6 & M6 & M6 \\
\hline L- & & & & & \\
\hline L11 & M & M4 & M & M & M4 \\
\hline L21 & & & & & \\
\hline U & & & & & \\
\hline V & M & M4 & M5 & M5 & M8 \\
\hline W & & & & & \\
\hline () & & & & & \\
\hline
\end{tabular}

Notes 1. For the terminal box type servomotors of special models, pay special attention to the model names.
2. Use one of the screws marked with * in the terminal box detailed drawings as the motor ground.
3. When an electromagnetic brake is provided, a surge absorber can be housed in the motor terminal box. See the installation procedure drawing N109D132.
4. The terminals should be connected as shown in the following figure using the screws listed in the above table.
Each connection section should be insulated by winding several turns of insulation tape around it so that it is securely insulated. When housing the connection sections in the terminal box, take care not to damage the insulation section.

5. For the cables to be used, see the following section.

\section*{(3) Wires to be used}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{(Note 2)} & (Note 3) \\
\hline Model & \begin{tabular}{l}
U.V.W \\
(Motor main circuit)
\end{tabular} & Grounding wire (Motor ground) & Electromagnetic brake for excitation \\
\hline \[
\begin{aligned}
& \text { HA053 } \\
& \text { HA13 } \\
& \text { HA23N } \\
& \text { HA33N }
\end{aligned}
\] & \[
\begin{aligned}
& 1.25 \mathrm{~mm}^{2} \\
& \left(1.25 \mathrm{~mm}^{2} \text { or less }\right)
\end{aligned}
\] & \[
\begin{aligned}
& 1.25 \mathrm{~mm}^{2} \\
& \left(1.25 \mathrm{~mm}^{2}\right. \text { or less) }
\end{aligned}
\] & \begin{tabular}{l}
\(0.5 \mathrm{~mm}^{2}\) or more \\
(\(1.25 \mathrm{~mm}^{2}\) or less)
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { HA40N } \\
& \text { HA43N }
\end{aligned}
\] & \(2 \mathrm{~mm}^{2}\) or more (\(3.5 \mathrm{~mm}^{2}\) or less) & \(2 \mathrm{~mm}^{2}\) or more (\(3.5 \mathrm{~mm}^{2}\) or less) & \begin{tabular}{l}
\(0.5 \mathrm{~mm}^{2}\) or more \\
(\(3.5 \mathrm{~mm}^{2}\) or less)
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { HA80N } \\
& \text { HA83N }
\end{aligned}
\] & \(2 \mathrm{~mm}^{2}\) or more (\(3.5 \mathrm{~mm}^{2}\) or less) & \(2 \mathrm{~mm}^{2}\) or more (\(3.5 \mathrm{~mm}^{2}\) or less) & \begin{tabular}{l}
\(0.5 \mathrm{~mm}^{2}\) or more \\
(\(3.5 \mathrm{~mm}^{2}\) or less)
\end{tabular} \\
\hline HA100N & \(3.5 \mathrm{~mm}^{2}\) or more (\(8 \mathrm{~mm}^{2}\) or less) & \(3.5 \mathrm{~mm}^{2}\) or more (\(8 \mathrm{~mm}^{2}\) or less) & \(0.5 \mathrm{~mm}^{2}\) or more (\(8 \mathrm{~mm}^{2}\) or less) \\
\hline \[
\begin{aligned}
& \text { HA103N } \\
& \text { HA200N }
\end{aligned}
\] & \(5.5 \mathrm{~mm}^{2}\) or more (\(8 \mathrm{~mm}^{2}\) or less) & \(5.5 \mathrm{~mm}^{2}\) or more (\(8 \mathrm{~mm}^{2}\) or less) & \(0.5 \mathrm{~mm}^{2}\) or more (\(8 \mathrm{~mm}^{2}\) or less) \\
\hline \[
\begin{aligned}
& \text { HA203N } \\
& \text { HA300N }
\end{aligned}
\] & \(5.5 \mathrm{~mm}^{2}\) or more (\(8 \mathrm{~mm}^{2}\) or less) & \(5.5 \mathrm{~mm}^{2}\) or more (\(8 \mathrm{~mm}^{2}\) or less) & \(0.5 \mathrm{~mm}^{2}\) or more (\(8 \mathrm{~mm}^{2}\) or less) \\
\hline HA700N HA900N HA303N HA703N & \(8 \mathrm{~mm}^{2}\) or more & \(8 \mathrm{~mm}^{2}\) or more & \(0.5 \mathrm{~mm}^{2}\) or more (\(8 \mathrm{~mm}^{2}\) or less) \\
\hline \begin{tabular}{l}
HA50NLC \\
HA100NLC \\
HA53NLC \\
HA103NLC
\end{tabular} & \begin{tabular}{l}
\(2 \mathrm{~mm}^{2}\) or more \\
(\(3.5 \mathrm{~mm}^{2}\) or less)
\end{tabular} & \(2 \mathrm{~mm}^{2}\) or more (3.5mm \({ }^{2}\) or less) & \\
\hline HA150NLC HA153NLC & \[
\begin{array}{|l|}
\hline 2 \mathrm{~mm}^{2} \text { or more } \\
\left(3.5 \mathrm{~mm}^{2} \text { or less }\right) \\
\hline
\end{array}
\] & \(2 \mathrm{~mm}^{2}\) or more (3.5mm \({ }^{2}\) or less) & \\
\hline \begin{tabular}{l}
HA200NLC \\
HA300NLC \\
HA203NLC \\
HA303NLC
\end{tabular} & \(5.5 \mathrm{~mm}^{2}\) or more (\(8 \mathrm{~mm}^{2}\) or less) & \(5.5 \mathrm{~mm}^{2}\) or more (\(8 \mathrm{~mm}^{2}\) or less) & \\
\hline HA500NLC & \(5.5 \mathrm{~mm}^{2}\) or more (\(8 \mathrm{~mm}^{2}\) or less) & \(5.5 \mathrm{~mm}^{2}\) or more (\(8 \mathrm{~mm}^{2}\) or less) & \[
1
\] \\
\hline HA503NL & \(8 \mathrm{~mm}^{2}\) or more & \(8 \mathrm{~mm}^{2}\) or more & - \\
\hline HA-LH11K2 & \(14 \mathrm{~mm}^{2}\) or more & \(14 \mathrm{~mm}^{2}\) or more & \[
j
\] \\
\hline HA-LH15K2 & \(22 \mathrm{~mm}^{2}\) or more & \(22 \mathrm{~mm}^{2}\) or more & \\
\hline
\end{tabular}

Notes 1. For reference, thewire size in parentheses above represents a restricted value from the soldered cup dimensions of the cannon plug.
2. "Internal wire regulation" for identifying the grounding wire is described as follows:

\section*{140-14 Green color identification of grounding wire}
1. A green identification sign shall be placed on any grounding wire for any grounding work except:
(1) when only the grounding wire is connected and it can be easily identified.
(2) when one conductor in a cable, tough rubber sheathed cable or cord with a multiple number of conductors is used as a grounding wire and when the conductor is a bare wire or has a green and yellow stripe pattern.
[Note] When one conductor in a cable, tough rubber sheathed cable or cord with a multiple number of conductors is used as a grounding wire, any other conductor except for one which has a green or greenish yellow stripe pattern cannot be used as a grounding wire.
2. If any other conductor except for one with a green or greenish yellow stripe pattern is used as a grounding wire, it is necessary to indicate that the conductor is a ground wire using green tape and the like at the terminal and proper positions.
3. When the electromagnetic brake works in "DC OFF", use shielded wires.
4. When the motor is used in an application where it travels, select wires with high flexibility.
5. For crimp terminals connected to the servo drive units, see section (2).

\subsection*{2.9 Motors with electromagnetic brake}

\section*{CAUTION}
1. The axis will not be mechanically held even when the dynamic brakes are used. If the machine could drop when the power fails, use a servomotor with magnetic brakes or provide an external brake mechanism as holding means to prevent dropping.
2. The brake (magnetic brake) assembled into the servomotor, are for holding, and must not be used for normal braking.
3. There may be cases when holding is not possible due to the magnetic brake's life or the machine construction (when ball screw and servomotor are coupled via a timing belt, etc.). Install a stop device to ensure safety on the machine side.
4. Use a double circuit configuration so that the magnetic brake operation circuit will activate even with the external emergency stop signal.

When using the motor with electromagnetic brake for double dynamic safety to prevent dropping of the vertical axis or during an emergency stop, note the following cautions.
(1) The brake is a safety brake. The brake is applied when the power (24VDC) is OFF.
(2) Always turn the servo OFF (SON signal) when applying the brakes.
(3) When using to prevent dropping of the vertical axis, create a sequence that considers the braking delay time.
(1) Outline of motors with electromagnetic brake
(a) Types

Motors with electromagnetic brakes are a lineup of the HC Series. Their specifications are described in the following paragraphs.
(b) Applications

When a motor with an electromagnetic brake is used for a vertical feed axis in a machining center, and even if the hydraulic pressure of a hydraulic balancer becomes 0 due to power OFF, the brake prevents the spindle head from dropping. In robots, even if the power is abruptly turned off, this type of motor can prevent the robot body from falling down.
When this type of motor is used for the feed axis of a grinding machine, a dual safety system can be structured along with an emergency stop dynamic brake, thereby preventing collisions and spraying of ground materials.
This motor cannot be used for any other purposes than holding and braking at the time of power failure (in emergency).
(c) Features
(i) Since the electromagnetic brake is a DC excitation type,
- The brake has a simple mechanism and high reliability.
- The brake tap selection is not necessary for frequencies of 50 Hz and 60 Hz .
- With excitation ON, no rush current and no shock occur.
- The brake portion is smaller than the motor section.
(ii) Since the electromagnetic brake is housed in the motor, the installation dimensions of this motor type are the same as those of non-brake type motors.
(iii) For electromagnetic brake, no maintenance inspections are required.
(iv) This motor type can be safely and securely mounted in elevated locations (with eyebolt taps holes for the HA100NB or larger models).

\section*{(2) Characteristics of electromagnetic brake}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & \begin{tabular}{ll}
HC52B & HC53B \\
HC102B & HC103B \\
HC152B & HC153B
\end{tabular} & \begin{tabular}{ll}
HC202B & HC203B \\
HC352B & HC353B \\
HC452B & HC453B \\
HC702B & HC703B \\
HC902B & \\
\hline
\end{tabular} \\
\hline \multicolumn{3}{|l|}{Type (Note 1)} & Spring type & safety brake \\
\hline \multicolumn{3}{|l|}{Rated voltage} & & DC \\
\hline \multicolumn{2}{|l|}{Rated current at \(20^{\circ} \mathrm{C}\)} & (A) & 0.80 & 1.43 \\
\hline \multicolumn{2}{|l|}{Excitation coil resistance at \(20^{\circ} \mathrm{C}\)} & \((\Omega)\)) & 29 & 16.8 \\
\hline \multicolumn{2}{|l|}{Capacity} & (W) & 19 & 34 \\
\hline \multicolumn{2}{|l|}{Attraction current} & (A) & 0.2 & 0.4 \\
\hline \multicolumn{2}{|l|}{Drop current} & (A) & 0.08 & 0.2 \\
\hline \multicolumn{2}{|l|}{Static frictional torque} & (\(\mathrm{N} \cdot \mathrm{m}\)) & 8.3 & 43.1 \\
\hline \multicolumn{2}{|l|}{Inertia moment (Note 2)} & \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) & 2.0 & 10 \\
\hline \multicolumn{2}{|l|}{Release delay time (Note 3)} & (s) & 0.04 & 0.1 \\
\hline \multirow[t]{2}{*}{Braking delay time (Note 3)} & AC OFF & (s) & 0.12 & 0.12 \\
\hline & DC OFF & (s) & 0.03 & 0.03 \\
\hline \multirow[t]{2}{*}{Tolerable braking work amount} & One braking action & (J) & 400 & 4500 \\
\hline & One hour & (J) & 4000 & 45000 \\
\hline \multicolumn{2}{|l|}{Brake looseness at motor shaft} & (degree) & 0.2 to 0.6 & 0.2 to 0.6 \\
\hline \multirow[b]{2}{*}{Brake life (Note 4)} & Times & & 20000 & 20000 \\
\hline & Braking work per braking action & (J) & 200 & 1000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{} & \[
\begin{aligned}
& \text { HA053B } \\
& \text { HA13B }
\end{aligned}
\] & HA23NB HA33NB & HA40NB HA80NB & HA43NB HA83NB & HA100NB HA200NB HA300NB HA700NB HA900NB & HA103NB HA203NB HA303NB HA703NB \\
\hline \multicolumn{3}{|l|}{Type (Note 1)} & \multicolumn{6}{|c|}{Spring type safety brake} \\
\hline \multicolumn{3}{|l|}{Rated voltage} & \multicolumn{6}{|c|}{24VDC} \\
\hline \multicolumn{2}{|l|}{Rated current at \(20^{\circ} \mathrm{C}\)} & (A) & 0.5 & 0.7 & \multicolumn{2}{|c|}{0.9} & \multicolumn{2}{|c|}{1.5} \\
\hline \multicolumn{2}{|l|}{Excitation coil resistance at \(20^{\circ} \mathrm{C}\)} & \((\Omega)\) & 111 & 49 & & & \multicolumn{2}{|c|}{23} \\
\hline \multicolumn{2}{|l|}{Capacity} & (W) & 12 & 17 & & & \multicolumn{2}{|c|}{36} \\
\hline \multicolumn{2}{|l|}{Attraction current} & (A) & 0.15 & 0.2 & & & \multicolumn{2}{|c|}{0.5} \\
\hline \multicolumn{2}{|l|}{Drop current} & (A) & 0.06 & 0.06 & & & \multicolumn{2}{|c|}{0.18} \\
\hline \multicolumn{2}{|l|}{Static frictional torque} & (\(\mathrm{N} \cdot \mathrm{m}\)) & 0.39 & 1.96 & & & \multicolumn{2}{|c|}{29.42} \\
\hline \multicolumn{2}{|l|}{Inertia moment (Note 2)} & \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) & 0.02 & 0.20 & & & \multicolumn{2}{|c|}{4.25} \\
\hline \multicolumn{2}{|l|}{Release delay time (Note 3)} & (s) & 0.03 & 0.05 & & & \multicolumn{2}{|c|}{0.10} \\
\hline \multirow[t]{2}{*}{Braking delay time (Note 3)} & AC OFF & (s) & 0.10 & 0.20 & \multicolumn{2}{|c|}{0.24} & \multicolumn{2}{|c|}{0.27} \\
\hline & DC OFF & (s) & 0.02 & 0.03 & & & \multicolumn{2}{|c|}{0.04} \\
\hline \multirow[t]{2}{*}{Tolerable braking work amount} & One braking action & (J) & 5.6 & 49.0 & \multicolumn{2}{|c|}{294.2} & \multicolumn{2}{|c|}{980.7} \\
\hline & One hour & (J) & 55.9 & 490.3 & \multicolumn{2}{|c|}{2942.0} & \multicolumn{2}{|c|}{9806.7} \\
\hline \multicolumn{2}{|l|}{Brake looseness at motor shaft} & (degree) & 0.25 to 2.5 & 0.2 to 1.5 & \multicolumn{2}{|r|}{0.16 to 0.57} & \multicolumn{2}{|r|}{0.10 to 0.36} \\
\hline \multirow[b]{2}{*}{Brake life (Note 4)} & Times & & 30000 & 30000 & \multicolumn{2}{|c|}{30000} & \multicolumn{2}{|c|}{30000} \\
\hline & Braking work per braking action & & 5.6 & 49.0 & \multicolumn{2}{|r|}{294.2} & \multicolumn{2}{|c|}{980.7} \\
\hline
\end{tabular}

Note 1. There is no manual open mechanism. When handling is required such as when centering the machine, prepare a separate 24VDC power supply, and electrically open the brake.
Note 2. This is the value added to servomotors without a break.
Note 3. This is the value at \(20^{\circ} \mathrm{C}\) for the initial attraction gap.
Note 4. The brake gap will widen as the brake lining wears from braking, but the gap cannot be adjusted. Thus, when adjustments are required, the brakes have reached their lives.
Note 5. The servomotor with a magnetic brake generates a leakage magnetic flux at the shaft end.
Note 6. When operating at the low-speed regions, a clattering sound may be heard from the brake lining, but this is not a problem in the functionality of the brakes.
(3) Using electromagnetic brake
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ M CAUTION } \\
\hline \begin{tabular}{l}
Mount surge absorber to brake terminal in DC OFF. \\
Do not connect or disconnect while the brake power is energized. The pins of the cannon plug could \\
be damaged due to spark.
\end{tabular} \\
\hline
\end{tabular}
(a) Brake excitation power
(i) The brake excitation power should be determined by considering both the voltage fluctuation and the excitation coil temperature so as to securely feed the flowing current.
(ii) There is no need for concern regarding the polarity of brake terminals. Do not mistake the brake terminals for another circuit.
(b) Brake excitation circuit

The brake excitation power can be turned OFF (brakes applied) with (a) AC OFF or (b) DC OFF.
(i) AC OFF

The braking delay time increases, the excitation circuit will become simple, and the relay shut-off capacity can be reduced.
(ii) DC OFF

The braking delay time can be shortened. However, in this case, a surge absorber will be required and the relay shut-off capacity will increase.
<Precautions>
- The contact DC shut-off capacity should be properly provided.
- Use a surge absorber.
- In the cannon connector type, the surge absorber is located far from the switch, therefore shield the cable between the switch and the surge absorber.

(b) Example of DC OFF

PS : 24VDC stabilized power
ZD1, ZD2 : Zener diode for power protection
(1W, 24V ;Mitsubishi MZ424-A)
VAR1, VAR2 : Surge absorber
(220V;Matsushita Electric Works ERZ-C10DK221)

Refer to the following table for selecting the power supply.
\begin{tabular}{|l|c|c|c|}
\hline \multirow{2}{|c|}{ Motor } & \multicolumn{3}{|c|}{ Power supply } \\
\cline { 2 - 4 } & \begin{tabular}{c}
Input voltage \\
AC (V)
\end{tabular} & \begin{tabular}{c}
Output voltage \\
DC (V)
\end{tabular} & \begin{tabular}{c}
Output current \\
DC (A)
\end{tabular} \\
\hline \begin{tabular}{l}
HC52B, HC102B, HC152B \\
HC53B, HC103B, HC153B
\end{tabular} & 100 or 200 & 24 & 0.80 \\
\hline \begin{tabular}{l}
HC202B, HC352B, HC452B, HC702B, \\
HC902B \\
HC203B, HC353B, HC453B, HC703B
\end{tabular} & 100 or 200 & 24 & 1.43 \\
\hline HA053NB, HA13NB & 100 or 200 & 24 & 0.5 A or more \\
\hline HA23NB, HA33NB & 100 or 200 & 24 & 0.7 or more \\
\hline \begin{tabular}{l}
HA40NB, HA43NB \\
HA80NB, HA83NB
\end{tabular} & 100 or 200 & 24 & 0.9 A or more \\
\hline \begin{tabular}{l}
HA100NB, HA103NB, HA900NB \\
HA200NB, HA203NB
\end{tabular} & 100 or 200 & 24 & 1.5 A or more \\
\begin{tabular}{l}
HA300NB, HA303NB \\
HA700NB, HA703NB
\end{tabular} & & \\
\hline
\end{tabular}
(c) Safety considerations
(i) Using timing belt

As shown below on the left, when the HC motor with electromagnetic brake is connected to a load (such as a ball screw) with a timing belt, if the belt is broken, a dangerous situation occurs. Even if the safety coefficient of the belt is increased, the belt may break due to over-tension or cutting chips. In this case, use the method as shown below on the right to improve the safety.

(ii) Application for grinding machine feed axis When NC is emergency-stopped, the dynamic brake is activated and the motor stops suddenly, but even if the electromagnetic brake is used along with the dynamic brake, the coasting distance cannot be remarkably shortened.
When considering a failsafe system for the grinding machine, test the coasting distance to determine the limit of the dynamic brake, and then evaluate whether the system is safe or not. In this case, the machine decelerates and stops in the pattern shown in the drawing. The coasting distance in the rapid traverse state, \(\mathrm{L}_{\text {MAX }}\), is the hatched area in the following drawing, and is calculated by the following equation:
\[
\mathrm{L}_{\mathrm{MAX}}=\frac{\mathrm{F}_{\mathrm{GO}} \times 10^{3}}{60}\left(\mathrm{t}_{1}+\mathrm{t}_{2}+\frac{\mathrm{t}_{3}}{2}\right)(\mathrm{mm})
\]

\section*{Braking using electromagnetic brake}

\(\mathrm{F}_{\mathrm{GO}}\) : Machine speed in rapid traverse state (\(\mathrm{m} / \mathrm{min}\))
\(\mathrm{t}_{1} \quad\) : Delay time in NC (0.05s)
* \(\mathrm{t}_{2} \quad\) : Electromagnetic braking delay time (s)
\(\left.\mathrm{t}_{3}: \mathrm{GD}_{\mathrm{M}}^{2}+\mathrm{GD}_{\mathrm{L}}^{2}\right) \mathrm{N}_{\mathrm{GO}}\) (s) \(9.55 \times 10^{4}\left(T_{L}+0.8 T_{B}\right)\)
\(* G D_{M}^{2} \quad: G D^{2}\) of motor with brake \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\)
\(G D_{\mathrm{L}}^{2}: \mathrm{GD}^{2}\) on load side converted into motor shaft \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\)
\(\mathrm{N}_{\mathrm{GO}}\) : Rapid traverse motor speed (\(\mathrm{r} / \mathrm{min}\))
\(T_{L}\) : Dynamic friction torque on motor speed conversion load side (N•m)
* \(\mathrm{T}_{\mathrm{B}} \quad:\) Static friction torque of electromagnetic brake (\(\mathrm{N} \cdot \mathrm{m}\))

For the asterisk mark (*), see the data in paragraph "2.9(2)".
(d) Precautions for sequence

Although the brake excitation power supply should be prepared by the user, exercise the following precautions:
(i) When the brake is released (excitation power is ON), make sure that the servo ON state takes place. The following sequence prevents the vertical axis from dropping.

(ii) When the above sequence cannot be formed, use the "DC OFF" of the excitation power to decrease the drop distance of the vertical axis.

(iii) In the MDS Series, the external output contacts on the servo drive unit can be used.

\subsection*{2.10 Motor vibration resistance}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{Motor model} & \multicolumn{2}{|r|}{Direction of vibration} \\
\hline & Axial (X) & Perpendicular to axis (Y) \\
\hline \[
\begin{aligned}
& \text { HC52, HC102, HC152, HC53, HC103, HC153 } \\
& \text { HA50L, HA100L, HA150L } \\
& \text { HA053N, HA13N, HA23N, HA33N } \\
& \text { (HA40N, HA80N, HA43N, HA83N) }
\end{aligned}
\] & \(9.8 \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{G})\) or less & \(24.5 \mathrm{~m} / \mathrm{s}^{2}(2.5 \mathrm{G})\) or less \\
\hline HC202, HC352
HC203, HC353
HA200L, HA300L
(HA100N, HA200N, HA103N, HA203N) & \(19.6 \mathrm{~m} / \mathrm{s}^{2}(2 \mathrm{G})\) or less & \(49.0 \mathrm{~m} / \mathrm{s}^{2}(5 \mathrm{G})\) or less \\
\hline HC452, HC702
HC453, HC703
HA500L
(HA300N, HA700N, HA303N, HA703N) & \(11.7 \mathrm{~m} / \mathrm{s}^{2}(1.2 \mathrm{G})\) or less & \(29.4 \mathrm{~m} / \mathrm{s}^{2}(3 G)\) or less \\
\hline \begin{tabular}{l}
HC902 \\
HA-LH11K2, HA-LH15K2 \\
(HA900N)
\end{tabular} & \(9.8 \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{G})\) or less & \(24.5 \mathrm{~m} / \mathrm{s}^{2}(2.5 \mathrm{G})\) or less \\
\hline
\end{tabular}

\section*{Conditions}
1. In the motor stop state
2. In the installed state
3. No abnormalities occur when the above vibrations are applied for 6 hours at 250 Hz (check that there is no resonance point at 250 Hz or less).

Note 1. Even if the vibration value is within above values, for machines with excess vibrations, (turret punch press, press, shearer, etc.), carefully check the looseness of the cannon plug, cable condition, and cable clamps, etc. on the machine side.

\subsection*{2.11 Motor shaft strength}

When the AC servomotor is connected to a load, check that the load being applied to the motor shaft does not exceed the values shown in the following table.

Motor shaft end tolerable load
\begin{tabular}{|l||cc|c|}
\hline \multicolumn{1}{|c|}{ Model } & \begin{tabular}{c}
Tolerable radial \\
load
\end{tabular} & \begin{tabular}{c}
Tolerable \\
thrust load
\end{tabular} \\
\hline \hline HA053NS, HA13NS & 78.4 N & (L=26) & 49 N \\
\hline HA23NS, HA33NS & 245 N & (L=30) & 147 N \\
\hline \begin{tabular}{l}
HC52T, HC102T, HC152T \\
HC53T, HC103T, HC153T \\
HA50LT, HA100LT, HA150LT \\
HA53LT, HA103LT, HA153LT \\
(HA40NT, HA80NT, HA43NT, HA83NT)
\end{tabular} & \(392 N\) & (L=58) & 490 N \\
\hline \begin{tabular}{l}
HC52S, HC102S, HC152S \\
HC53S, HC103S, HC153S \\
HA50LS, HA100LS, HA150LS \\
HA53LS, HA103LS, HA153LS \\
(HA40NS, HA80NS, HA43NS, HA83NS)
\end{tabular} & 980 N & (L=55) & 490 N \\
\hline \begin{tabular}{l}
HC202S, HC352S, HC452S, HC702S \\
HC203S, HC353S, HC453S, HC703S \\
(HA100NS, HA200NS, HA300NS, HA700NS) \\
(HA103NS, HA203NS, HA303NS, HA703NS)
\end{tabular} & 2058 N & (L=79) & 980 N \\
\hline \begin{tabular}{l}
HC902S \\
HA500LS, HA503LS, HA-LH11K2S \\
(HA900NS)
\end{tabular} & 2450 N & (L=85) & 980 N \\
\hline HA-LH15K2S & 2940 N & (L=100) & 980 N \\
\hline
\end{tabular}

L : Distance between flange installation surface and center of load weight (mm)

Note 1. The tolerable thrust load indicates that no radial load is applied.
The above tolerable values are the maximum values and are not the continuous tolerable loads. When the motor is connected to the load, the radial load applied to the motor shaft is calculated as follows.

Direct connection:
Use flexible coupling, and align the core as much as possible. When using highly rigid coupling, further precise core alignment will be required.
The radial load applied to the shaft on which the coupling is used is obtained by the following equation.
\[
\mathrm{P}=\mathrm{K}_{\mathrm{R}} \times \delta
\]

P : Radial load (kg)
\(\mathrm{K}_{\mathrm{R}}\) : Spring constant in radial direction of coupling (\(\mathrm{kg} / \mathrm{mm}\))
\(\delta \quad:\) Core deviation (mm)
Gear:
The radial load applied to the axis on which a gear is directly engaged to the motor shaft is obtained by the following equation.
\[
P=\frac{1}{980} \frac{T_{\max }}{\frac{D}{2} \cos \alpha}
\]

P : Radial load (kg)
\(\mathrm{T}_{\text {max }}\) : Maximum motor torque (\(\mathrm{N} \cdot \mathrm{m}\))
D : Gear pitch circle (cm)
\(\alpha\) : Gear pressure angle (degree)
When the timing belt is used, obtain the total of the initial tension of the belt and the force by the load torque. For the calculation method, see the related document issued by the timing belt manufacturer.

Note 2. Cautions for mounting load (prevention of impact on shaft)
- When using the servomotor with keyway, use the screw hole at the end of the shaft to mount the pulley onto the shaft. When installing, first insert both screw bolts into the screw holes on the shaft, and press them in while tightening the nuts.
- When pulling out the pulley, use a pulley puller.
- When transporting the unit, do not put hands or ropes on the encoder cover.
- When assembling, do not tap the shaft end with a hammer, etc.
(The detector could be damaged.)

- The direction that the detector is installed on the servomotor cannot be changed.

\subsection*{2.12 Environmental conditions}
\begin{tabular}{|c|c|c|}
\hline Environment & \multicolumn{2}{|c|}{Conditions} \\
\hline Ambient temperature & \multicolumn{2}{|l|}{\(0^{\circ} \mathrm{C}\) to \(+40^{\circ} \mathrm{C}\) (with no freezing)} \\
\hline Ambient humidity & \multicolumn{2}{|l|}{\(80 \% \mathrm{RH}\) or less (with no dew condensation)} \\
\hline Storage temperature & \multicolumn{2}{|l|}{\(-15^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\) (with no freezing)} \\
\hline Storage humidity & \multicolumn{2}{|l|}{\(90 \%\) RH or less (with no dew condensation)} \\
\hline Atmosphere & \multicolumn{2}{|l|}{\begin{tabular}{l}
- Indoors (Where unit is not subject to direct sunlight) \\
- No corrosive gases, flammable gases, oil mist or dust
\end{tabular}} \\
\hline Altitude & \multicolumn{2}{|l|}{1000 m or less above sea level} \\
\hline \multirow{4}{*}{Vibration} & HC52/102/152/53/103/153
HC103R/153R/203R/353R/503R & \begin{tabular}{l}
\(\mathrm{X}: 9.8 \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{G})\) or less \\
\(\mathrm{Y}: 24.5 \mathrm{~m} / \mathrm{s}^{2}(2.5 \mathrm{G})\) or less
\end{tabular} \\
\hline & \[
\begin{aligned}
& \hline \text { HC202/352 } \\
& \text { HC203/353 }
\end{aligned}
\] & \begin{tabular}{l}
X: \(19.6 \mathrm{~m} / \mathrm{s}^{2}(2 \mathrm{G})\) or less \\
Y: \(49 \mathrm{~m} / \mathrm{s}^{2}(5 \mathrm{G})\) or less
\end{tabular} \\
\hline & \[
\begin{aligned}
& \text { HC452/702 } \\
& \text { HC453/ } 703
\end{aligned}
\] & \(X: 11.7 \mathrm{~m} / \mathrm{s}^{2}(1.2 \mathrm{G})\) or less \(\mathrm{Y}: 24.5 \mathrm{~m} / \mathrm{s}^{2}(2.5 \mathrm{G})\) or less \\
\hline & HC902 & \begin{tabular}{l}
\(X: 9.8 \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{G})\) or less \\
\(\mathrm{Y}: 24.5 \mathrm{~m} / \mathrm{s}^{2}(2.5 \mathrm{G})\) or less
\end{tabular} \\
\hline
\end{tabular}

The vibration conditions are as shown below.

3. Detectors III-58
3.1 List of detector specifications III-58
3.2 Serial pulse encoder III-59
3.2.1 Features III-59
3.2.2 Types III-59
3.2.3 Outline dimension drawings III-60
3.2.4 Cable connection diagram III-63
3.2.5 Maintenance III-64
3.3 Scale I/F unit III-65
3.3.1 Outline III-65
3.3.2 Model configuration III-65
3.3.3 List of specifications III-65
3.3.4 Unit outline dimension drawing III-66
3.3.5 Description of connector III-67
3.3.6 Example of scale I/F unit connection III-68
3.3.7 Cables III-70

\section*{3. Detectors}

\section*{CAUTION}

The MDS-C1 Series servo drive units use the serial encoders only as the motor end detectors.
The OHE/OHA type detectors cannot be used as the motor end detectors.

\subsection*{3.1 List of detector specifications}

\section*{CAUTION}

The connection to MDS-B-HR, AT343 and LC191M is limited to the control system with the servo drive unit set to high-gain drive unit mode. It cannot be connected in standard drive unit mode.

\subsection*{3.2 Serial pulse encoder}

\subsection*{3.2.1 Features}
(1) With the serial pulse encoder, high resolution and high-speed rotation can be handled, allowing high resolution position detection to be selected.
(2) The detector resolutions include the following two types.
(a) 1,000,000p/rev (ABS/INC)
(b) \(100,000 \mathrm{p} / \mathrm{rev}\) (ABS/INC)

Various detection units can now be handled according to the machine specifications.
(3) The signal wiring can be decreased compared to the conventional A, B, Z signals.
(4) The serial pulse encoder series is available for the standalone type encoder (ET Series). However, there are restrictions to the combination with conventional parts.
(5) The L dimensions are approx. 25 mm shorter than the conventional part for the small capacity servomotor (200/300W).
(6) By achieving a smooth speed waveform, an improved effect of the new robust control (disturbance observer, etc.) function that carries out estimation from the speed can be anticipated.

\subsection*{3.2.2 Types}
(1) Motor end encoder
\begin{tabular}{|l|c|c|}
\hline & Type & Resolution \\
\hline \multirow{2}{*}{ Absolute value detector } & OSA105 & \(1,000,000 \mathrm{p} / \mathrm{rev}\) \\
\cline { 2 - 3 } & OSA104 & \(100,000 \mathrm{p} / \mathrm{rev}\) \\
\hline \multirow{2}{*}{ Incremental detector } & OSE105 & \(1,000,000 \mathrm{p} / \mathrm{rev}\) \\
\cline { 2 - 3 } & OSE104 & \(100,000 \mathrm{p} / \mathrm{rev}\) \\
\hline
\end{tabular}
(2) Standalone encoder (machine end detection)
\begin{tabular}{|l|l|c|}
\hline & Type & Resolution \\
\hline \multirow{4}{*}{ Absolute value detector } & OHA25K-ET & \(25,000 \mathrm{p} / \mathrm{rev}\) \\
\cline { 2 - 2 } & OSA105ET & \multirow{2}{*}{\(1,000,000 \mathrm{p} / \mathrm{rev}\)} \\
\cline { 2 - 2 } & OSA105ET1 & \\
\cline { 2 - 2 } Incremental detector & OSA104ET & \multirow{2}{*}{\(100,000 \mathrm{p} / \mathrm{rev}\)} \\
\cline { 2 - 2 } & OSA104ET1 & \\
\cline { 2 - 2 } & OHE25K-ET & \(25,000 \mathrm{p} / \mathrm{rev}\) \\
\cline { 2 - 2 } & OSE105ET & \multirow{2}{*}{\(1,000,000 \mathrm{p} / \mathrm{rev}\)} \\
\cline { 2 - 2 } & OSE105ET1 & \multirow{2}{*}{\(100,000 \mathrm{p} / \mathrm{rev}\)} \\
\cline { 2 - 2 } & OSE104ET & \\
\hline
\end{tabular}

The ET1 has notches. (Refer to "3.2.3 Outline drawing".)

\subsection*{3.2.3 Outline dimension drawings}
(1) Standalone encoder (OSADET/OSEDET Series) outline drawing

(2) Outline drawings of OHE/OHA type ball screw end detector

\section*{- OHE 25K-ET}

Connector: 97F3102E22-14P (DDK)
\begin{tabular}{|l|l|}
\hline Weight & 1.0 kg or less \\
\hline \begin{tabular}{l}
Moment \\
of inertia
\end{tabular} & \(0.2 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\) or less \\
\hline \begin{tabular}{l}
Friction \\
torque
\end{tabular} & \(0.0196 \mathrm{~N} \cdot \mathrm{~m}\) or less \\
\hline \begin{tabular}{l}
Thermal \\
relay
\end{tabular} & Functions at \(85 \pm 5^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
Pin \\
No.
\end{tabular} & Function & \begin{tabular}{c}
Pin \\
No.
\end{tabular} & Function \\
\hline A & A-phase signal & K & V-phase signal \\
\hline B & \(\overline{\mathrm{A}}\)-phase signal & L & \(\overline{\mathrm{V}}\)-phase signal \\
\hline C & B-phase signal & M & W-phase signal \\
\hline D & \(\overline{\mathrm{B}}\)-phase signal & N & Case grounding \\
\hline E & NC & P & NC \\
\hline F & Z-phase signal & R & GND \\
\hline G & \(\bar{Z}\)-phase signal & S & \(+5 V D C\) \\
\hline H & U-phase signal & U & \(\overline{\text { W}}\)-phase signal \\
\hline J & \(\bar{U}\)-phase signal & T & Thermal relay \\
\hline \multicolumn{4}{l|}{}
\end{tabular}
(Note 1) This is an incremental encoder for the ball screw end.
(Note 2) The outline dimensions are the same as for the absolute encoder, and only the nameplate color differs.

\section*{- OHA 25K-ET}

\begin{tabular}{|l|l|}
\hline Weight & 1.0 kg or less \\
\hline \begin{tabular}{l}
Moment \\
of inertia
\end{tabular} & \(0.2 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\) or less \\
\hline \begin{tabular}{l}
Friction \\
torque
\end{tabular} & \(0.0196 \mathrm{~N} \cdot \mathrm{~m}\) or less \\
\hline \begin{tabular}{l}
Thermal \\
relay
\end{tabular} & Functions at \(85 \pm 5^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Connector: 97F3102E22-14P (DDK)
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \hline \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Function & \[
\begin{aligned}
& \text { Pin } \\
& \text { No. }
\end{aligned}
\] & Function \\
\hline A & A-phase signal & K & RQ signal (Request signal) \\
\hline B & \(\overline{\text { A }}\)-phase signal & L & \[
\frac{\overline{\mathrm{RQ}}_{\text {signal }}}{(\text { Request signal) }}
\] \\
\hline C & B-phase signal & M & NC \\
\hline D & \(\overline{\mathrm{B}}\)-phase signal & N & Case grounding \\
\hline E & VB (Battery) & P & NC \\
\hline F & Z-phase signal & R & GND \\
\hline G & \(\bar{Z}\)-phase signal & S & +5VDC \\
\hline \multirow[t]{2}{*}{H} & \multirow[t]{2}{*}{RX signal
(Serial absolute signal)} & T & Thermal relay \\
\hline & & U & NC \\
\hline \multirow[t]{2}{*}{J} & \multirow[t]{2}{*}{\[
\begin{gathered}
\overline{\mathrm{RX}} \text { signal } \\
\text { (Serial absolute } \text { signal) }
\end{gathered}
\]} & V & Thermal relay \\
\hline & & & \\
\hline
\end{tabular}
(Note 1) This is an incremental encoder for the ball screw end.
(Note 2) The outline dimensions are the same as for the absolute encoder, and only the nameplate color differs.

\subsection*{3.2.4 Cable connection diagram}

\section*{4 CAUTION}

Do not mistake the connection when manufacturing the detector cable. Failure to observe this could lead to runaway.

The conventional CNV2 and 3 can be used for the cable.
To reduce the amount of wiring, the following serial encoder dedicated cable can be used. In this case, the conventional detector cannot be used.
(1) CNV12, CNV13 cable (\(\mathrm{L} \leq 20 \mathrm{~m}\))

Drive unit connector

(2) CNV12, CNV13 cable (\(20<\mathrm{L} \leq 30 \mathrm{~m}\))

Drive unit connector

The connectors on the drive unit side and detector side are the same as the conventional CN2 and 3 connectors.)

\subsection*{3.2.5 Maintenance}

\section*{. WARNING}
1. Wait at least 15 minutes after turning the power OFF before starting maintenance or inspections. Failure to observe this could lead to electric shocks.
2. Only qualified persons must carry out the maintenance or inspections. Failure to observe this could lead to electric shocks. Contact Service Center or Service Station for repairs or part replacements.

If any fault occurs in the configuration components, carry out service with the following procedures.

\section*{(1) Encoder}

Always prepare the service parts for the conventional type and the serial encoder. As a rule, replace the detector with the same type as the detector before exchanging it.
If changes are to be made, always confirm the compatibility and usable combination.
- Confirmation of encoder model

Confirm the encoder model on the nameplate attached to the motor cover, or displayed on the Servo Monitor screen.

\section*{Servo Monitor (SERVO DIAGNOSIS) Screen}

If a fault occurs in the motor unit, replace the motor and encoder as a set.

\subsection*{3.3 Scale I/F unit}

\subsection*{3.3.1 Outline}

\section*{MDS-B-HR outline}
(1) The unit interpolates the original wave of scale analog output to create high-resolution position data.
Increasing the detector resolution is effective for obtaining high gain of the servo.
(2) 1-scale, 2drive operation will be possible with the signal distribution function (model division available).

\subsection*{3.3.2 Model configuration}

MDS-B-HR model configuration

\subsection*{3.3.3 List of specifications}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & \multirow{3}{*}{Unit} & \multicolumn{8}{|c|}{Scale I/F unit model} \\
\hline & & \multicolumn{2}{|l|}{MDS-B-HR-} & \multicolumn{2}{|l|}{MDS-B-HR-} & \multicolumn{2}{|l|}{MDS-B-HR-} & \multicolumn{2}{|l|}{MDS-B-HR-} \\
\hline & & 11 & 12 & 11P & 12P & 21 & 22 & 21P & 22P \\
\hline Corresponding scale (Example) & & \multicolumn{4}{|c|}{LS186/LIDA181/LIF181
(HEIDENHAIN product)} & \multicolumn{4}{|c|}{AT342 special (Mitsutoyo product)} \\
\hline Signal 2-distribution function & & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) & \(\times\) & \(\bigcirc\) \\
\hline Analog signal input specification & & \multicolumn{4}{|l|}{A-phase, B-phase and Z-phase 2.5 V reference Amplitude \(1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\)} & \multicolumn{4}{|l|}{A-phase, B-phase and Z-phase 2.5 V reference Amplitude \(2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\)} \\
\hline Applicable frequency & & \multicolumn{8}{|c|}{Analog original waveform 200 kHz max.} \\
\hline Scale resolution & & \multicolumn{8}{|c|}{Analog original waveform/512 div.} \\
\hline Input/output communication form & & \multicolumn{8}{|c|}{High-speed serial communication I/F, equivalent to RS485} \\
\hline Availability of magnetic pole detector & & \multicolumn{8}{|c|}{None} \\
\hline Tolerable ambient temperature & \({ }^{\circ} \mathrm{C}\) & \multicolumn{8}{|c|}{0 to \(55^{\circ} \mathrm{C}\)} \\
\hline Tolerable ambient relative humidity & \% & \multicolumn{8}{|c|}{90\% or less (no condensing)} \\
\hline Atmosphere & & \multicolumn{8}{|c|}{With no poisonous gas} \\
\hline Tolerable vibration & \begin{tabular}{l}
\(\mathrm{m} / \mathrm{s}^{2}\) \\
(G)
\end{tabular} & \multicolumn{8}{|c|}{\(98.0 \mathrm{~m} / \mathrm{s}^{2}(10 \mathrm{G})\)} \\
\hline Tolerable impact (shock) & \begin{tabular}{l}
\[
\mathrm{m} / \mathrm{s}^{2}
\] \\
(G)
\end{tabular} & \multicolumn{8}{|c|}{\(294.0 \mathrm{~m} / \mathrm{s}^{2}\) (30G)} \\
\hline Tolerable power voltage & V & \multicolumn{8}{|c|}{5VDC \(\pm 5 \%\)} \\
\hline Maximum heat generation & W & \multicolumn{8}{|c|}{2W} \\
\hline Weight & kg & \multicolumn{8}{|c|}{0.5 kg or less} \\
\hline Protective degree & & \multicolumn{2}{|l|}{IP65} & \multicolumn{2}{|c|}{IP67} & \multicolumn{2}{|c|}{IP65} & \multicolumn{2}{|c|}{IP67} \\
\hline
\end{tabular}

\subsection*{3.3.4 Unit outline dimension drawing}

\subsection*{3.3.5 Description of connector}
\begin{tabular}{|c|l|l|}
\hline Connector name & \multicolumn{1}{|c|}{ Application } & \multicolumn{1}{|c|}{ Remarks } \\
\hline CON & For connection with servo drive unit (2nd system) & None for 1st system specifications \\
\hline CON & For connection with servo drive unit & \\
\hline CON3 & For connection with scale & \\
\hline CON4 & \begin{tabular}{l}
For connection with m agnetic pole detection unit \\
(MDS-B-MD)
\end{tabular} & \(*\) When linear servo system is used \\
\hline
\end{tabular}

Assignment of connector pins

Connector: RM15WTR - 8P (Hirose Electric) \(\qquad\) CON, CON
RM15WTR - 12S (Hirose Electric) \(\qquad\) CON3 RM15WTR - 10S (Hirose Electric) \(\qquad\) CON

CON
CON

CON

CON

\subsection*{3.3.6 Example of scale I/F unit connection}

Cable list
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Item} & Model name & Content \\
\hline \[
\begin{aligned}
& \hline \text { For } \\
& \text { CN2 }
\end{aligned}
\]
CN3 & <1> & Cable for direct connection with scale & CNL2, CNL2-S CNL3, CNL3-S Cable length max. 30m & Servo drive unit side connector
(3M or the equivalent)
Connector: 10120-3000VE
Shell kit \(: 10320-52 F 0-008\) (One-touch type)
\(: 10320-52 A 0-008\) (Screw type)
This cable must be manufactured by the user. \\
\hline & <2> & Cable between drive unit and HR unit & \begin{tabular}{l}
CNL2H2, CNL2H2-S CNL3H2, CNL3H2-S CNL2H1, CNL2H1-S CNL3H1, CNL3H1-S \\
Cable length
\[
2,5,10,20,30 \mathrm{~m}
\]
\end{tabular} & \begin{tabular}{ll}
\begin{tabular}{l}
Servo drive unit side connector \\
(3M or the equivalent)
\end{tabular} & \begin{tabular}{l}
MDS-B-HR unit side \\
connector \\
(Hirose Electric)
\end{tabular} \\
Connector: & \\
\(10120-3000 \mathrm{VE}\) & Connector: \\
Shell kit: & RM15WTP-8S \\
\(10320-52 F 0-008\) (One-touch & Clamp: \\
RM15WTP-CP (10) \\
type) & \\
\(10320-52 A 0-008\) (Screw type) & \\
\hline
\end{tabular} \\
\hline For MDS-BHR unit & <3> & Cable between HR unit and scale & CNLH3-S Cable length max. 30m & \begin{tabular}{l}
MDS-B-HR unit side connector \\
(Hirose Electric) \\
Connector: RM15WTP-12S \\
Clamp : RM15WTP-CP (10) \\
This cable must be manufactured by the user.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{3.3.7 Cables}
(1) Direct scale connection
< CNL2,CNL2-S cable connection diagram>
(2) Between drive unit and HR unit <CNL2H1,CNL2H2,CNL2H1-S,CNL2H2-S cable connection diagram> <CNL3H1,CNL3H2,CNL3H1-S,CNL3H2-S cable connection diagram>

(3) Between HR unit and scale <CNLH3-S cable connection diagram>

Refer to Chapter I "5.2.7 Cable wire" in the "I. MDS-C1 Series Servo/Spindle System Configuration Section" for details on the wire material.
Recommended wire type: A14B2343 (Junkosha)
4. Servomotor and Detector Installation III-72
4.1 Installation III-72
4.2 Coupling with the load III-76

\section*{4. Servomotor and Detector Installation}

\subsection*{4.1 Installation}

\section*{. CAUTION}
1. Do not hold the cables, axis or detector when transporting the servomotor.
2. Use the suspension bolts on the servomotor only to transport the servomotor. Do not transport the servomotor when it is installed on the machine.
3. Always install the servomotor with reduction gear in the designated direction. Failure to do so could lead to oil leaks.
4. Securely fix the servomotor to the machine. Insufficient fixing could lead to the servomotor slipping off during operation.
5. When connecting a coupling to the servomotor shaft end, do not apply an impact by using a hammer, etc. Failure to observe this could lead to detector damage.
6. Install a cover, etc., on the shaft so that the rotating sections of the servomotor are not contacted during operation.
7. Do not apply a load exceeding the tolerable load onto the servomotor shaft. The shaft could brake.

\section*{(1) Precautions for oil and water}
a. Since the servomotor is not water/oil resistant do not splash cutting fluid or lubrication oil on the servomotor. If cutting fluid, etc., enters the servomotor or the detector, the insulation of the motor coil may be damaged or the detector failure may occur.
b. If cutting fluid, etc., splashes on the motor, put a protection cover on the motor. Check the joints, bends, shape, and dimensions of the protection cover.
c. Use the oil-proof specifications wiring tube and oil-proof connector when using the servomotor in an environment where it will be exposed to large amounts of cutting fluid or the protection cover is not adequate.
d. Do not use the servomotor if part of the servomotor is submerged in oil or water. When the servomotor is located near the floor, install a water drain path on the floor to direct the flow. Do not clog the water drain path with cutting chips.
e. Check the drain path of oil and water on the moving table and the slide cover.

Be aware of the following conditions.
- When the table arrives at a specific position, the drain hole comes to the upper section of the motor. Thus, oil or water splashes the motor.
- Depending on the movement of the slide cover and table, oil or water which stays on the slide cover or table splashes the motor.
- Depending on the shrinkage or expansion of the cover, oil or water which stays on the slide cover leaks from the wiper section and drops on the motor.
f. The servomotor should be installed in a well ventilated place where oil and water will not splash it, and where it can be easily installed or removed.

\section*{(2) Precautions against gear oil}
a. Although the servomotor can be installed horizontally or at the upper or lower end of the axis, when the servomotor is installed at the upper end, take extra measures on the machine side to avoid oil from the gear box, etc., from entering the motor. In this situation, the oil seal of the motor is not sufficient protection.
b. Oil level and pressure in the gear box

The oil level in the gear box where the servomotor is horizontally mounted should be always lower than the oil seal lip of the servomotor shaft (both in the stop and rotation states). If the oil level is higher than the oil lip, oil may enter the motor. Some servomotors are not provided with shaft end oil seals. To prevent the inner pressure of the gear box from increasing, provide an intakehole on the gear box.

\section*{[Machine side]}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Model & \[
\begin{aligned}
& \text { HA053N } \\
& \text { HA13N }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HA23N } \\
& \text { HA33N }
\end{aligned}
\] & \begin{tabular}{l}
HC52 \\
HC53 \\
HC102 \\
HC103 \\
HA50L \\
HA100NL \\
HA150NL \\
HA53NL \\
HA103NL \\
HA153NL \\
(HA40N) \\
(HA43N) \\
(HA80N) \\
(HA83N)
\end{tabular} & HC152, HC203
HC202, HC353
HC352, HC453
HC452, HC703
HC702
HA200NL, HA300NL
HA203NL, HA303NL
(HA100N), (HA103N)
(HA200N), (HA203N)
(HA300N), (HA303N)
(HA700N), (HA703N) & \begin{tabular}{l}
HC902 HA500NL, HA503NL, \\
HA-LH11K2 \\
(HA900N)
\end{tabular} & HA-LH15K2 \\
\hline Height from center of motor shaft h (mm) & 8 & 10 & 20 & 25 & 30 & 40 \\
\hline
\end{tabular}

\section*{(3) Detector}
a. When transporting and installing the servomotor, avoid shocks to the detector on the servomotor. To prevent items from hitting the detector workers from getting on the detector and tools or workpieces from dropping on the detector, install a protection cover around the detector. Any design where a coupling should be struck to the motor shaft should be avoided to prevent damage to the detector.
b. The detector cover for motors other than HA053N, HA13N, HA23N and 33N can be turned \(90^{\circ}\), but design the machine so that it faces the " A " direction as a standard.
The parameter settings must be changed when the connector is faced in the B, C or D directions for the HA23N and 33N motors. (The setting changes are complicated and the combinations may be mistaken, so the connector direction should not be changed if possible.)

Symbol of direction of detector connector (The " A " direction is standard.)

c. The detectors for motors other than HA23N and 33 N are fixed to the motor with pins. The HA23N and 33N motor detectors are fixed to the motor with screws, but the polarity must be matched correctly when installing. If this is ignored and the detector is replaced or the detector connector direction is changed, the control will not be possible, and the motor may run out of control. The relation of the detector and motor position should not be changed after delivery from Mitsubishi.

* When using the low inertia motor and IP67 compatible motor, do not remove the encoder and encoder cover.
The magnetic pole position of the low inertia motor has been adjusted when the encoder was installed.
The IP67 compatible motor has been tested in water with the encoder and cover installed.

\section*{(4) Connector and cable}
a. The connector should be located so that it faces downward.

When the motor is installed vertically or on an incline, provide a cable trap.

b. The standard cannon plugs are not waterproof.
c. The cables may lead oil and water to the motor and the detector, causing negative effects. Avoid allowing the cables to lead oil and water to the motor and the detector, and do not allow the cables to dip in oil and water (see the following figure).

d. Adhere to the cable clamping method and avoid bending or stressing the cable connections under the dead weight of the cable.
If the motor shifts, the cable bending radius should be determined according to the required bending life and the cable type.
e. Prevent sharp chips from cutting the cable's outer sheath and from being abraded by contact with any edge of the machine. In addition, prevent the cable from being trampled by people and automobiles.
(5) Attaching/detaching connectors
a. While the machine is turned ON, do not connect or disconnect any connector to or from the machine, otherwise, the motor may be damaged. Also, avoid dropping the machine and abrupt motor start, or generation large arcs may occur.
It is recommended to tie each cannon plug with a wire.
b. Even when the power is turned OFF, the absolute value detector is backed up by a battery. Thus, when the detector cable is disconnected, the absolute position is lost. It is recommended to tie this plug with a wire and indicate a warning sign "do not disconnect this plug even while power is turned OFF."
c. The cannon plugs are tightened manually. Provide enough space to correctly tighten each cannon plug.

\section*{(6) Applications involving vibration}

Tie the cannon plugs and cable clamps of the motor and detector with wires. Clamp carefully to avoid vibration stress and the stress of the cable dead weight on the cable connections, both of which may affect the relationship between the cable finish diameter and the clamp size. In addition, check that the clamps are not loose.
Include the retightening of the cannon plugs and the clamps in the machine manual as a periodical inspection item.

\section*{- Safety holes for protection against connector separation}

If the coupling nut has safety holes, when the connector is exposed to strong shock and vibration, pass a wire through the holes and fix the connector to protect the connector from being disconnected. Under normal conditions, this treatment is not required (extracted from a catalog).
- Since the cable clamp has two safety holes which are similar to the connector, it can also be fixed.
- The safety holes differ slightly in structure depending on the
 manufacturer.

\section*{- Fixing wire (\(0.813 ø\) annealed stainless steel wire)}

QQ-W-423 FORM-1 FS304 CD-A 0.032 (inches) is recommended because of its mechanical strength and easy machining.

\section*{- Optimum tightening torque for coupling nuts}

The connector is designed so that it can be easily tightened by turning the coupling nut manually without using a special tool. When the connector is exposed to vibration, it should be fixed with a wire. There is no regulation for the tightening torque in the MIL Standards.
When this connector is used for an airplane, the connector should be fixed with a wire by the user.
(7) Any design which requires modification, disassembling, or additional machining of the motor should be avoided.

\subsection*{4.2 Coupling with the load}

The motor shaft is coupled to the machine by one of the following methods:
The direct coupling method, in which the motor shaft is coupled directly to the machine by a flexible joint.
The gear method, in which the motor speed is reduced when using a gear.
The timing belt method, in which the motor shaft is coupled to the machine using a timing belt.
This method is an important factor that affects the machine performance.
The following table outlines comparisons among the three methods.
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline Noise & \begin{tabular}{c}
No \\
lubri- \\
cation
\end{tabular} & \begin{tabular}{c}
Back- \\
lash
\end{tabular} & \begin{tabular}{c}
Rigid- \\
ity
\end{tabular} & \begin{tabular}{c}
Reliability of \\
coupling
\end{tabular} & Life & \begin{tabular}{c}
Torque up \\
by speed \\
reduction
\end{tabular} & \begin{tabular}{c}
Degree of \\
freedom of \\
installing \\
motor
\end{tabular} & \begin{tabular}{c}
Cause of motor shaft \\
breakage
\end{tabular} \\
\hline \begin{tabular}{l}
Direct \\
coupling
\end{tabular} & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & O Looseness of bolt & \(\bigcirc\) & \(\times\) & \(\times\) & \begin{tabular}{l}
Misalignment of shaft \\
center
\end{tabular} \\
\hline Gear & \(\times\) & \(\times\) & \(\triangle\) & \(\Delta\) & Breakage of teeth & \(\Delta\) & \(\bigcirc\) & \(\bigcirc\) & \begin{tabular}{l}
Too small backlash, \\
undersized pitch diameter
\end{tabular} \\
\hline \begin{tabular}{l}
Timing \\
belt
\end{tabular} & \(\triangle\) & \(\bigcirc\) & \(\bigcirc\) & \(\times\) & \(\times\) Breakage of belt & \(\times\) & \(\bigcirc\) & \(\bigcirc\) & \begin{tabular}{l}
Excess belt tension, \\
undersized pitch diameter
\end{tabular} \\
\hline
\end{tabular}

\section*{(1) Direct coupling}

When a load is directly coupled to the motor shaft, use a flexible joint. Although the flexible joint can absorb misalignment, to maximize the durability of the machine, it is necessary to completely match the load with the shaft center during the initial installation. In addition, it is necessary to periodically adjust the misalignment. When the flexible joint is used, carefully select a joint according to the environmental conditions and operate it according to the specification manual issued by the manufacturer.
Although a coupling whose rigidity is low decreases the alignment accuracy, it is not preferable for the servomotor. To use the submicron specification, skillfully align it, and use a high rigidity coupling. When such conditions are not satisfied, the servo performance cannot be maximized, (the gain cannot be increased) and the motor shaft may break.

\section*{Example of direct coupling with load}

\section*{(2) Gear coupling}

To obtain a large torque by reducing speed, a gear is used between the motor shaft and the load.
The accuracy of the gear and the amount of backlash depend largely on the accuracy of the machine positioning and the noise of the machine operation.
In the gear coupling method, it is necessary to properly select the accuracy and the amount of the backlash.
In the gear coupling method, take measures to prevent oil from entering the motor. Refer to "4.1(2)" for details.

Example of coupling with load using gear

\section*{(3) Spun ring}

Since the output shaft of a servomotor of 2 kW or greater does not have a key groove, it is necessary to use a frictional joint such as a spun ring for coupling with the load shaft.
For details of the usage of the spun ring, contact the manufacturer or dealer.
- Table of characteristics and dimensions RfN8006
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\mathbf{d} \times \mathbf{D} \\
\mathbf{m m}
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{L} \\
\mathrm{~mm}
\end{gathered}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\lambda \\
\mathrm{mm}
\end{gathered}
\]} & \multirow[t]{3}{*}{Effective contact area Ft \(\mathrm{mm}^{2}\)} & \multirow[t]{3}{*}{\begin{tabular}{l}
Note 1 \\
Po \\
N
\end{tabular}} & \multirow[t]{3}{*}{Note 2
\[
\begin{aligned}
& \mathbf{P}_{\mathbf{A}} \\
& \mathbf{N}
\end{aligned}
\]} & \multirow[t]{3}{*}{\begin{tabular}{|c}
Transmission \\
torque \\
Mt \\
\(\mathrm{N} \cdot \mathrm{m}\)
\end{tabular}} & \multirow[t]{3}{*}{Tangent transmission force Pax N} & \multicolumn{4}{|r|}{Gap xmm} & \multirow[t]{3}{*}{\begin{tabular}{l}
Weight \\
G \\
kg
\end{tabular}} \\
\hline & & & & & & & & \multicolumn{4}{|l|}{Number of set} & \\
\hline & & & & & & & & 1 & 2 & 3 & 4 & \\
\hline \(11 \times 14\) & 4.5 & 3.7 & 128 & 7502 & 6933 & 8.43 & 1540 & 2 & 2 & 3 & 3 & 0.00198 \\
\hline \(24 \times 28\) & 6.3 & 5.3 & 400 & 8189 & 21182 & 56.88 & 4707 & 3 & 3 & 4 & 5 & 0.0068 \\
\hline \(35 \times 40\) & 7 & 6 & 659 & 9905 & 34912 & 135.33 & 7747 & 3 & 3 & 4 & 5 & 0.014 \\
\hline
\end{tabular}
(Note 1) Axial pressure necessary for allowing the engagement clearance to be 0 .
(Note 2) Net pressure force necessary for producing transmission force

Outline dimension drawing of RfN8006
Various manufacturers produce frictional joints as substitutes of spun ring.
The specifications, dimensions, etc., of the products may differ depending on the manufacturers.
When using them, carefully check the specifications.

\section*{(4) Taper gauge}

The standard shaft end of a servomotor of 1 kW or less is a tapered shaft. When the taper should be matched on the machine side, a copy gauge should be made in accordance with the master gauge of Mitsubishi Electric.
The copy gauge should be directly ordered through the following manufacturer. Note the following items.

1) Place order with:

Chubu Seiki Seisakusho
2) Requirement:

Taper gauge (copy): \(16 \times 28 \times 1 / 10\)
Mitsubishi Nagoya Works should have the master of the copy gauge.
(\((\underset{)}{ }\) 7335)

\section*{(5) Other reference items}

The shapes and dimensions of the servomotor mounting flange section and the shaft end conform to the standards of Japan Machine Tool Industry Association MAS402.
The only available coupling methods for the servomotor for the MCI machine tool are the method using the straight shaft without the key (spun ring) and the method using the taper shaft end.
The method of the straight shaft with the key cannot be practically used because of the wear caused by the backlash of the key.
The method by which the motor shaft and the hub are simultaneously machined, and a taper pin is used to couple them, should be avoided because a service motor is not provided. A motor modified in such a manner cannot be repaired and the spare parts may not be supplied.
For the strength of the motor shaft, see section 2.11.
For the operation of the electromagnetic brake when a timing belt is coupled in the vertical axis, see section 2.9 (3). Assuming that the diameter of ball screw is \(\mathrm{Dm}(\mathrm{mm})\) and the speed is N \((r / \mathrm{min})\), the following relation is satisfied.
\[
\mathrm{DmN}<70000
\]

This performance can be enhanced by controlling the lubrication and cooling methods.
As the standard for precision ball screws, JIS-B-1192 has been issued.

\section*{Tightening torque for tapered shaft end screw.}

The screw shaft will be damaged if the tightening torque of the tapered shaft end screw is too tight. Follow the values given below when tightening.
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Model } & Tapered shaft end screw & \multicolumn{2}{|c|}{ Reference } \\
\cline { 3 - 4 } & tightening torque & Screw size & Tightening torque \\
\hline HA23N & 4.71 to \(6.37 \mathrm{~N} \cdot \mathrm{~m}\) & M6 \(\times 1.0\) & Approx. 300 kg \\
\hline HA33N & & & \\
\hline HC52 HC53 & & M10 \(\times 1.25\) & Approx. 900 kg \\
\begin{tabular}{l}
HC102 HC103 \\
(HA40N) (HA43N) \\
(HA80N) (HA83N)
\end{tabular} & 22.56 to \(30.40 \mathrm{~N} \cdot \mathrm{~m}\) & & \\
\hline
\end{tabular}
5. MDS-C1-V1 Servo Drive III-80
5.1 Availability of 2-system (standard drive unit mode and high-gain drive unit mode) III-80
5.2 Model configuration III 81
5.3 Specifications list III-82
5.4 Connection of dynamic brake unit III-85
5.5 Hardware setting III-87
5.6 Parameter settings III-88
5.6.1 Standard Parameters (Standard Drive unit) III-89
5.6.2 High-gain Parameters (High-gain Drive unit) III-113
5.7 Alarms and Warnings III-138
5.8 Explanation of connector and terminal block III-147
5.9 Main circuit and brake connection III-148
5.9.1 Main circuit III-148
5.9.2 Brake III-150
5.10 Wiring system diagrams for systems III-151
5.11 D/A output function III-154
5.11.1 Outline III-154
5.11.2 Hardware specific ations III-154
5.11.3 Parameters III-154
5.11.4 Output data No. III-155
5.11.5 Setting of output magnification III-155
5.11.6 Others III-156

\section*{5. MDS-C1-V1 Servo Drive}

\subsection*{5.1 Availability of 2-system} (standard drive unit mode and high-gain drive unit mode)

\section*{(1) Outline}
- The C1 Series can be controlled in two modes: the mode equivalent to the standard drive unit (MDS-B-V1/V2) and the mode equivalent to the high-gain drive unit (MDS-B-V14/V24).
Thus, reloading both from the standard drive unit (MDS-B-V1/V2) and high-gain drive unit (MDS-V14/V24) with the same parameter becomes available.
- Whether the reloading is from the standard drive unit or from the high-gain drive unit is recognized automatically through the state of the servo parameter set in the machine.

\section*{CAUTION}

If the control mode has to be changed to the high-gain drive unit (MDS-B-V14/V24) mode after reloading from the standard drive unit (MDS-B-V1/V2), it is necessary to change the parameter again as the high-gain drive unit and to adjust the servo parameter.
(2) Applicable software version

The software to be applied to 2-system is A1 Version (BND-582W000-A1) or later.
* The A0 Version cannot be applied to the standard drive unit mode and is used only in high-gain drive unit mode.

\section*{(3) Control mode changeover discrimination}

Whether the servo drive unit is started in standard drive unit mode or in high-gain drive unit mode is recognized with the servo parameters SV009 to SV012, and SV033 set in the machine.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Control mode} & High-gain mode & Standard mode & Standard mode & High-gain mode & High-gain mode \\
\hline \multirow[t]{3}{*}{} & SV009 to SV012 & SV009 = 4096 or more, SV010 = 4096 or more, SV011 = 768 or more, and SV012 = 768 or more & \begin{tabular}{l}
The setting that does not satisfy any of the \\
following conditions: \\
SV009 = 4096 or more \\
SV010 \(=4096\) or more, \\
SV011 = 768 or more, \\
SV012 = 768 or more
\end{tabular} & \[
\begin{aligned}
& \hline \text { SV009 }=* \\
& \text { SV010 }=* \\
& \text { SV011 }=* \\
& \text { SV012 }=*
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { SV009 }=* \\
& \text { SV010 }=* \\
& \text { SV011 }=* \\
& \text { SV012 }=*
\end{aligned}
\] & \[
\begin{aligned}
& \text { SV009 }=* \\
& \text { SV010 }=* \\
& \text { SV011 }=* \\
& \text { SV012 }=*
\end{aligned}
\] \\
\hline & SV033
(SSF2) /bit8 & 0 & 0 & 1 & 0 & 1 \\
\hline & \[
\begin{aligned}
& \hline \text { SV033 } \\
& \text { (SSF2) /bit9 }
\end{aligned}
\] & 0 & 0 & 0 & 1 & 1 \\
\hline
\end{tabular}

\section*{. CAUTION}

The changeover of standard drive unit mode and high-gain drive unit mode is actually carried out when the 200 V power is turned ON. Thus, if the above servo parameters are changed, the alarm "7F" occurs, requesting for the power to be tuned ON again. The alarm "7F" may also occur when the power is turned ON for the first time after the machine has been installed. Therefore, when the alarm "7F" occurs, turn ON the power again. Unless the above servo parameters are changed, the alarm "7F" will not occur after the power is turned ON for the second time or later.

\section*{（4）Display of servo monitor type in high－gain mode and standard drive unit mode（Servo Monitor screen）}

Whether the system is set to high－gain mode or to standard drive unit mode can be confirmed through the display of type on the Servo Monitor screen．
\begin{tabular}{|c|c|c|}
\hline Unit type & At standard drive unit mode & At high－gain mode \\
\hline MDS－C1－V1－पロロ & C1V1s口a口 & C1V1－ロロロ \\
\hline MDS－C1－V2－ロロOO & C1V2sロロOO & C1V2－ロロOO \\
\hline MDS－C1－V1－45S & C1V1s4S & C1V1－4S \\
\hline MDS－C1－V2－7070S & C1V2s7S7S & C1V2－7S7S \\
\hline MDS－C1－V2－3510S & C1V2s3510 & C1V2－3510 \\
\hline MDS－C1－V2－3520S & C1V2s3520 & C1V2－3520 \\
\hline
\end{tabular}

\section*{1．CAUTION}

Only the serial encoder（OSE／OSA type）is applicable to the motor end detector for both high－gain mode and standard mode．

\section*{5．2 Model configuration}

Servo drive capacity class symbol
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Capacity} & \multicolumn{4}{|c|}{Applicable motor} \\
\hline & & Standard 2000r／min & Standard 3000r／min & \[
\begin{aligned}
& \text { Low inertia } \\
& \text { 2000r/min }
\end{aligned}
\] & Low inertia 3000r／min \\
\hline 01 & 0.1 kW & & \[
\begin{gathered}
\hline \hline \text { HA053 } \\
\text { HA13 }
\end{gathered}
\] & & \\
\hline 03 & 0.3 kW & & \[
\begin{aligned}
& \text { HA23N } \\
& \text { HA33N }
\end{aligned}
\] & & \\
\hline 05 & 0.5 kW & \[
\begin{gathered}
\text { HC52 } \\
(\mathrm{HA} 40 \mathrm{~N})
\end{gathered}
\] & \[
\begin{gathered}
\text { HC53 } \\
\text { (HA43N) } \\
\hline
\end{gathered}
\] & HA50NL & \\
\hline 10 & 1.0 kW & \[
\begin{aligned}
& \mathrm{HC102} \\
& \text { (HA80N) }
\end{aligned}
\] & \[
\begin{gathered}
\text { HC103 } \\
\text { (HA83N) }
\end{gathered}
\] & HA100NL & \[
\begin{gathered}
\text { HA53NL } \\
\text { (HC103R) (HC153R) }
\end{gathered}
\] \\
\hline 20 & 2.0 kW & \[
\begin{gathered}
\text { HC152, HC202 } \\
(\mathrm{HA} 100 \mathrm{~N})
\end{gathered}
\] & HC153 & \[
\begin{aligned}
& \text { HA150NL } \\
& \text { HA200NL }
\end{aligned}
\] & \[
\begin{gathered}
\text { HA103NL } \\
\text { HA153NL (HC203R) } \\
\hline
\end{gathered}
\] \\
\hline 35 & 3.5 kW & \[
\begin{gathered}
\text { HC352 } \\
\text { (HA200N) }
\end{gathered}
\] & \[
\begin{gathered}
\text { HC203 } \\
\text { (HA103N) }
\end{gathered}
\] & HA300NL & \[
\begin{aligned}
& \text { HA203NL } \\
& \text { (HC353R) }
\end{aligned}
\] \\
\hline 45 & 4.5 kW & \[
\begin{gathered}
\text { HC452 } \\
\text { (HA300N) }
\end{gathered}
\] & \[
\begin{gathered}
\text { HC353 } \\
\text { (HA203N) }
\end{gathered}
\] & HA500NL & HA303NL
（HC503R） \\
\hline 45S & 4.5 kW （With specifi－ cations limit） & \begin{tabular}{l}
HC452 \\
＊Specifications limit：78\％of the motor stall rating
\end{tabular} & HC353
＊Specifications
limit： \(94 \%\) of the
motor stall rating & & \\
\hline 70 & 7.0 kW & \[
\begin{gathered}
\text { HC702 } \\
\text { (HA700N) }
\end{gathered}
\] & \[
\begin{gathered}
\text { HC453 } \\
\text { (HA303N) }
\end{gathered}
\] & & HA503NL \\
\hline 70S & 7.0 kW （With specifi－ cations limit） & \begin{tabular}{l}
HC702 \\
＊Specifications limit： \(90 \%\) of the motor stall rating
\end{tabular} & HC453
＊Specifications
limit： \(82 \%\) of the
motor stall rating & & \\
\hline 90 & 9.0 kW & \[
\begin{gathered}
\text { HC902 } \\
\text { (HA900N) }
\end{gathered}
\] & \[
\begin{gathered}
\text { HC703 } \\
\text { (HA703N) }
\end{gathered}
\] & & \\
\hline 110 & 11.0 kW & & & HA－LH11K2 & \\
\hline 150 & 15.0 kW & & & HA－LH15K2 & \\
\hline
\end{tabular}
＊The V1－110／150 servo drive unit does not have built－in dynamic brakes，so always install an external dynamic brake unit．

\subsection*{5.3 Specifications list}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{13}{|c|}{1-axis servo drive unit MDS-C1-V1 Series} \\
\hline Model & MDS-C1-V1- & 01 & 03 & 05 & 10 & 20 & 35 & 45S & 45 & 70S & 70 & 90 & 110 & 150 \\
\hline \multicolumn{2}{|l|}{Rated output [kW]} & 0.1 & 0.3 & 0.5 & 1.0 & 2.0 & 3.5 & 4.5 & 4.5 & 7.0 & 7.0 & 9.0 & 11.0 & 150 \\
\hline \multirow[t]{2}{*}{Output} & \[
\begin{array}{|ll|}
\hline \begin{array}{l}
\text { Rated } \\
\text { voltage }
\end{array} & \text { [V] } \\
\hline
\end{array}
\] & \multicolumn{13}{|c|}{155VAC} \\
\hline & \[
\begin{array}{|ll|}
\hline \begin{array}{l}
\text { Rated } \\
\text { current }
\end{array} & {[\mathrm{A}]} \\
\hline
\end{array}
\] & 0.95 & 2.9 & 3.4 & 6.8 & 13.0 & 19.0 & 28.0 & 28.0 & 33.5 & 33.5 & 42.0 & 68.0 & 87.0 \\
\hline \multirow[t]{2}{*}{Input} & \[
\begin{array}{ll}
\hline \begin{array}{l}
\text { Rated } \\
\text { voltage }
\end{array} & {[\mathrm{V}]}
\end{array}
\] & \multicolumn{13}{|c|}{270-311VDC} \\
\hline & \[
\begin{array}{|ll}
\hline \begin{array}{l}
\text { Rated } \\
\text { current }
\end{array} \\
\hline
\end{array}
\] & 1 & 3 & 4 & 7 & 14 & 17 & 30 & 30 & 35 & 35 & 45 & 55 & 75 \\
\hline \multirow{3}{*}{Contro power supply} & Voltage [V] & \multicolumn{13}{|c|}{200/200-230VAC} \\
\hline & \[
\begin{aligned}
& \text { Frequen- } \\
& \text { cy }
\end{aligned}
\] & \multicolumn{13}{|c|}{\(50 / 60 \mathrm{~Hz}\)} \\
\hline & Current [A] & \multicolumn{13}{|c|}{Max. 0.2A} \\
\hline \multicolumn{2}{|l|}{Control system} & \multicolumn{13}{|c|}{Sine-wave PWM control system/current control method} \\
\hline \multicolumn{2}{|l|}{Braking} & \multicolumn{13}{|c|}{Regeneration braking and dynamic braking} \\
\hline & Dynamic brake & \multicolumn{13}{|c|}{Built-in} \\
\hline \multicolumn{2}{|l|}{Structure} & \multicolumn{13}{|c|}{Fully enclosed, self-cooling (Protective degree: IP65, IP67)} \\
\hline \multirow{5}{*}{Environment} & Ambient tempera [\({ }^{\circ} \mathrm{C}\)] ture & \multicolumn{13}{|c|}{Operation: 0 to \(55^{\circ} \mathrm{C}\) (non freezing), Storage/transportation: -15 to \(70^{\circ} \mathrm{C}\) (non freezing)} \\
\hline & Ambient humidity [\%RH] & \multicolumn{13}{|c|}{Operation: 90\%RH or less (non condensing), Storage/transportation: 90\%RH or less (non condensing)} \\
\hline & Atmosphere & \multicolumn{13}{|c|}{Indoors (no direct sunlight); no corrosive gas, inflammable gas, oil mist, or dust.} \\
\hline & \begin{tabular}{|ll}
\hline \begin{tabular}{l}
Eleva- \\
tion
\end{tabular}\(\quad[\mathrm{m}]\)
\end{tabular} & \multicolumn{13}{|c|}{Operation/storage: 1000 meters or less above sea level, Transportation: 10000 meters or less above sea level} \\
\hline & \[
\begin{aligned}
& \text { Vibration/ } \\
& \text { Impact }
\end{aligned} \quad\left[\mathrm{m} / \mathrm{s}^{2}\right]
\] & \multicolumn{13}{|c|}{\(4.9 \mathrm{~m} / \mathrm{s}^{2}(0.5 \mathrm{G}) / 49 \mathrm{~m} / \mathrm{s}^{2} \quad(5 \mathrm{G})\)} \\
\hline \multicolumn{2}{|l|}{Cooling type} & \multicolumn{4}{|c|}{Self-cooling} & \multicolumn{9}{|c|}{Forced air cooling} \\
\hline \multicolumn{2}{|l|}{Weight [kg]} & \multicolumn{4}{|c|}{2.1} & \multicolumn{3}{|c|}{3.8} & 4.5 & 4.9 & \multicolumn{2}{|c|}{5.8} & \multicolumn{2}{|c|}{6.4} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Maximum heating value \\
[W]
\end{tabular}} & 21 & 27 & 37 & 53 & 91 & 132 & 158 & 185 & 189 & 284 & 331 & 465 & 641 \\
\hline \multicolumn{2}{|l|}{Noise} & \multicolumn{13}{|c|}{Less than 55dB} \\
\hline
\end{tabular}
(Note 1) The same capacity drive units with a smaller width are indicated with an "S" at the end of the type.
Note that limits will apply to continuous operation.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{16}{|c|}{Spindle drive unit MDS-C1-SP [] Series} \\
\hline Model & MDS-C1-SP[] & 04 & 075 & 15 & 22 & 37 & 55 & 75 & 110 & 150S & 150 & 185 & 220 & 260 U & 260 & 300 U & 300 \\
\hline \multicolumn{2}{|l|}{Rated output [kW]} & 0.1 & 0.3 & 0.5 & 1.0 & 2.0 & 3.5 & 4.5 & 4.5 & 7.0 & 7.0 & 9.0 & 11.0 & 150 & 26.0 & 30.0 & 30.0 \\
\hline \multirow[t]{2}{*}{Output} & Rated
voltage [V] & \multicolumn{16}{|c|}{155VAC} \\
\hline & Rated
current [A] & 1.5 & 2.6 & 4.5 & 10.0 & 15.0 & 18 & 26 & 37 & 4 & & 63 & 79 & & & & \\
\hline \multirow[t]{2}{*}{Input} & Rated
voltage [V] & \multicolumn{16}{|c|}{270-311VDC} \\
\hline & \[
\begin{array}{ll}
\hline \begin{array}{l}
\text { Rated } \\
\text { current }
\end{array} & {[A]}
\end{array}
\] & 1 & 4 & 7 & 13 & 17 & 20 & 30 & 41 & 5 & & 76 & 95 & & & & \\
\hline \multirow{3}{*}{Contro power supply} & Voltage [V] & \multicolumn{16}{|c|}{200/200-230VAC} \\
\hline & \[
\begin{aligned}
& \text { Frequen- }[\mathrm{Hz}] \\
& \text { cy }
\end{aligned}
\] & \multicolumn{16}{|c|}{\(50 / 60 \mathrm{~Hz}\)} \\
\hline & Current [A] & \multicolumn{16}{|c|}{Max. 0.2A} \\
\hline \multicolumn{2}{|l|}{Control system} & \multicolumn{16}{|c|}{Sine-wave PWM control system/current control method} \\
\hline \multicolumn{2}{|l|}{Braking} & \multicolumn{16}{|c|}{Power supply regeneration braking} \\
\hline & Dynamic brake & \multicolumn{16}{|c|}{Built-in} \\
\hline \multicolumn{2}{|l|}{Structure} & \multicolumn{16}{|c|}{Fully enclosed, self-cooling (Protective degree: IP65, IP67)} \\
\hline \multirow{5}{*}{Environ ment} & Ambient tempera [\({ }^{\circ} \mathrm{C}\)] ture & \multicolumn{16}{|c|}{Operation: 0 to \(55^{\circ} \mathrm{C}\) (non freezing), Storage/transportation: -15 to \(70^{\circ} \mathrm{C}\) (non freezing)} \\
\hline & Ambient humidity [\%RH] & \multicolumn{16}{|c|}{Operation: 90\%RH or less (non condensing), Storage/transportation: 90\%RH or less (non condensing)} \\
\hline & Atmosphere & \multicolumn{16}{|c|}{\begin{tabular}{l}
Indoors (no direct sunlight); \\
no corrosive gas, inflammable gas, oil mist, or dust.
\end{tabular}} \\
\hline & Elevation [m] & \multicolumn{16}{|c|}{Operation/storage: 1000 meters or less above sea level, Transportation: 10000 meters or less above sea level} \\
\hline & \[
\begin{aligned}
& \text { Vibration/ }\left[\mathrm{m} / \mathrm{s}^{2}\right] \\
& \text { Impact }
\end{aligned}
\] & \multicolumn{16}{|c|}{\(4.9 \mathrm{~m} / \mathrm{s}^{2}(0.5 \mathrm{G}) / 49 \mathrm{~m} / \mathrm{s}^{2} \quad\) (5G)} \\
\hline \multicolumn{2}{|l|}{Cooling type} & \multicolumn{3}{|r|}{Self-cooling} & \multicolumn{13}{|c|}{Forced air cooling} \\
\hline \multicolumn{2}{|l|}{Weight [kg]} & \multicolumn{3}{|c|}{2.1} & \multicolumn{2}{|r|}{3.8} & \multicolumn{3}{|c|}{4.4} & 4.7 & \multicolumn{2}{|r|}{5.7} & 6.5 & 8.4 & 6.3 & 8.4 & 6.3 \\
\hline \multicolumn{2}{|l|}{Maximum heating value} & 30 & 40 & 49 & 69 & 79 & 108 & 137 & 181 & & 35 & 342 & 366 & \multicolumn{2}{|c|}{483} & \multicolumn{2}{|c|}{620} \\
\hline \multicolumn{2}{|l|}{Noise} & \multicolumn{16}{|c|}{Less than 55dB} \\
\hline
\end{tabular}
(Note 1) The 15 kW drive unit with smaller width is indicated with an " S " at the end of the type. Note that limits will apply to continuous operation.
(Note 2) The heat radiation fin for the \(26 \mathrm{~kW} / 30 \mathrm{~kW}\) capacities is a straight type. The types with a spiral fin are indicated with a "U" at the end of the type.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{13}{|c|}{Servo drive model name} \\
\hline & \multirow[t]{2}{*}{Unit} & \multicolumn{13}{|c|}{MDS-C1-} \\
\hline & & V1-01 & V1-03 & V1-05 & V1-10 & V1-20 & V1-35 & V1-45 & V1-45S & V1-70 & V1-70S & V1-90 & V1-110 & V1-150 \\
\hline \multirow{9}{*}{Applicable motor} & \multirow[t]{9}{*}{} & \multirow[t]{9}{*}{\[
\begin{array}{|c|}
\hline \text { HA05 } \\
\text { HA13 }
\end{array}
\]} & \multirow[t]{9}{*}{HAZ3N} & \multirow[t]{9}{*}{\[
\begin{array}{|c}
\text { HC52 } \\
\text { HC53 } \\
\text { HA50NL } \\
\text { (HA40N) } \\
\text { (HA43N) }
\end{array}
\]} & \multirow[t]{9}{*}{\begin{tabular}{l}
HC102 \\
HC103 \\
HA100NL \\
HA53NL \\
(HABON) \\
(HA83N) \\
(HC103R) \\
(HC153R)
\end{tabular}} & \multirow[t]{9}{*}{HC152} & \multirow[t]{9}{*}{\begin{tabular}{|c|}
\hline HC352 \\
HC203 \\
HA300NL \\
HA203NL \\
(HAZOON) \\
(HA103N) \\
(HC353R) \\
\hline
\end{tabular}} & \multirow[t]{9}{*}{\begin{tabular}{l}
HC452 \\
HC353 \\
HA500NL \\
HA303NL \\
(HA300N) \\
(HA203N) \\
(HC503R
\end{tabular}} & \multirow[t]{9}{*}{\[
\begin{array}{l|l|}
\hline \text { HC452 } \\
\text { HC353 }
\end{array}
\]} & \multirow[t]{9}{*}{\begin{tabular}{l}
HC702 \\
HC453 \\
HA503N \\
(HA700N \\
(HA303N
\end{tabular}} & HC702 & HC902 & \multirow[t]{9}{*}{HA-LH11K2} & \multirow[t]{9}{*}{HA-LH15K2} \\
\hline & & & & & & & & & & & \multirow[t]{8}{*}{HC453} & \multirow[t]{4}{*}{\[
\begin{gathered}
\text { HC703 } \\
(\text { (HA900N }) \\
(H A 703 N)
\end{gathered}
\]} & & \\
\hline & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline Output voltage & V & \multicolumn{13}{|c|}{155} \\
\hline Rated output current & A & 0.95 & 2.9 & 3.4 & 6.8 & 13 & 16 & 28 & 28 & 33.5 & 33.5 & 42 & 68 & 87 \\
\hline Stall current & A & \multirow[t]{2}{*}{1.4} & 3.0 & 5.0 & 8.8 & 18.2 & 25 & 44 & 31.5 & 55 & 41 & 68 & 84 & 100 \\
\hline Maximum output current & A & & 8.1 & 17 & 28 & 42 & 57 & 85 & 85 & 113 & 113 & 141 & 204 & 260 \\
\hline \multirow{9}{*}{Maximum output torque (During combination with motor) Same order as applicable motor} & \multirow[t]{9}{*}{N.m} & \multirow[t]{9}{*}{\[
\begin{array}{|l|}
\hline 0.69 \\
1.37
\end{array}
\]} & \multirow[t]{9}{*}{\[
\begin{array}{|c|}
\hline 2.75 \\
5.6 \\
\hline
\end{array}
\]} & \multirow[t]{9}{*}{\[
\begin{aligned}
& \hline 11.8 \\
& 8.82 \\
& 13.0 \\
& (14.2) \\
& (10.2)
\end{aligned}
\]} & \multirow[t]{9}{*}{\begin{tabular}{|c|}
\hline 21.6 \\
16.7 \\
20.7 \\
14.1 \\
\((25.5)\) \\
\((19.2)\) \\
\((7.95)\) \\
\((11.9)\) \\
\hline
\end{tabular}} & \multirow[t]{9}{*}{\begin{tabular}{|c}
\\
35.3 \\
41.7 \\
28.4 \\
31 \\
32 \\
22.5 \\
22.8 \\
\((42)\) \\
\((15.9)\)
\end{tabular}} & \multirow[t]{9}{*}{\[
\begin{gathered}
\hline 59.8 \\
40.2 \\
52 \\
37 \\
(60) \\
(40) \\
(27.8)
\end{gathered}
\]} & \multirow[t]{9}{*}{\[
\begin{array}{|c|}
\hline 87.5 \\
55.9 \\
72 \\
60 \\
(87) \\
(56) \\
(39.8)
\end{array}
\]} & \multirow[t]{9}{*}{\[
\begin{aligned}
& 87.5 \\
& 55.9
\end{aligned}
\]} & \multirow[t]{9}{*}{\[
\begin{array}{c|}
\hline 120 \\
79.8 \\
78 \\
(120) \\
(80)
\end{array}
\]} & \multirow[t]{9}{*}{\[
\begin{array}{l|}
\hline 120 \\
79.8
\end{array}
\]} & \multirow[t]{9}{*}{\[
\begin{gathered}
\hline 153 \\
105 \\
(153) \\
(105)
\end{gathered}
\]} & \multirow[t]{9}{*}{158} & \multirow[t]{9}{*}{215} \\
\hline & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\subsection*{5.4 Connection of dynamic brake unit}

The V1-110/150 servo drive unit does not have built-in dynamic brakes, so always install an external dynamic brake unit.
\begin{tabular}{|c|c|c|}
\hline Model name & Coil specification & Compatible drive unit \\
\hline MDS-B-DBU-150 & 24VDC 160mA & V1-110/150 \\
\hline
\end{tabular}
(1) When using only dynamic brake unit

(2) When using dynamic brake unit + magnetic brakes (combination use)

\section*{(3) The stop by the Dynamic brake}

The dynamic brake is built in to MDS-B / C1-V 1-90.
MDS-B/C1-V1-110/150 use an external unit.
It is made to stop in a dynamic brake at the time of emergency stop generating, without performing slowdown control.
A dynamic brake and a motor brake control output (CN2O) also operate simultaneously immediately after inputting an emergency stop signal.

\section*{\. CAUTION}

Please do not use a dynamic brake as a usual slowdown stop. When continuation operation is carried out, the brake resistance for dynamic may be damaged.

\subsection*{5.5 Hardware setting}

\begin{tabular}{|c|c|c|}
\hline Function & Setting & Meaning \\
\hline \multirow{4}{*}{\begin{tabular}{c}
Axis No. setting \\
CS
\end{tabular}} & 0 & 1st axis \\
\cline { 2 - 3 } & 1 & 2nd axis \\
\cline { 2 - 3 } & 2 & 3rd axis \\
\cline { 2 - 3 } & 3 & 4th axis \\
\cline { 2 - 3 } & 4 & 5th axis \\
\cline { 2 - 3 } & 5 & 6th axis \\
\cline { 2 - 3 } & 6 & 7th axis \\
\cline { 2 - 3 } & 7 to E & Not usable \\
\cline { 2 - 3 } & F & \begin{tabular}{c}
Not used axis \\
selection
\end{tabular} \\
\hline
\end{tabular}

The servo drive unit axis No. can be set by opening the upper lid (next to LED status display window) on the top of the MDS-C1-V1 servo drive unit, and turning the rotary switch. When the rotary switch is set to " F " and the servo drive unit power is turned on, that axis will not be controlled. Thus, set axes that are not being used to "F". (The communication with the NC will not take place during initialization, and an alarm will not occur.)
In the above example, the 1st axis is set.

\subsection*{5.6 Parameter settings}
\begin{tabular}{|l|}
\hline Do not make remarkable adjustments and changes as the operation could become unstable. \\
\hline
\end{tabular}
(1) Parameter screens

The servo parameters are set on the NC [M_PARAM] screens.
Examples of the screen displays are shown for the 14" CRT screen.
There are a total of 64 servo parameters. Screen page 1 shows the parameters regarding the specifications, and page 2 an excerpt of the parameters used for adjustment. Pages 3 and following are all parameters for SV001 to SV064.
The parameters can be changed from any screen.

\subsection*{5.6.1 Standard Parameters (Standard Drive unit)}

There are a total of 64 servo parameters. The parameters can be changed on any screen.
(Note) In the following explanations on bits, set all bits not used, including blank bits, to " 0 ".
Setting and display method of servo parameters vary with the CNC to be used. Refer to the instruction manuals for each CNC.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Name} & \multirow[t]{2}{*}{Abbr.} & \multirow[t]{2}{*}{Details} & \multirow[t]{2}{*}{Type} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { MDS-A/B } \\
\text { compatible }
\end{array}
\]} & \multirow[t]{2}{*}{Change method} & \multirow[t]{2}{*}{Setting unit} & \multirow[t]{2}{*}{Min.} & \multirow[t]{2}{*}{Max.} & \multicolumn{3}{|c|}{Type} \\
\hline & & & & & & & & & Machine & Servo & Adjust \\
\hline sv001 & PC1 & Motor gear ratio & Spec & \(\bigcirc\) & Initial & & 1 & 32767 & \(\bigcirc\) & & \\
\hline sv002 & PC2 & Machine gear ratio & Spec & \(\bigcirc\) & Initial & & 1 & 32767 & \(\bigcirc\) & & \\
\hline sv003 & PGN1 & Position loop gain 1 & Spec & \(\bigcirc\) & Normal & rad/s & 1 & 200 & & & \(\bigcirc\) \\
\hline sv004 & PGN2 & Position loop gain 2 & Adjust & 0 & Normal & rad/s & 0 & 999 & & 0 & \\
\hline sv005 & VGN1 & Speed loop gain 1 & Adjust & \(\bigcirc\) & Normal & & 1 & 999 & & & \(\bigcirc\) \\
\hline sv006 & VGN2 & Speed loop gain 2 & & \(\bigcirc\) & Normal & & -1000 & 1000 & & & \(\bigcirc\) \\
\hline sv007 & VIL & Speed loop delay compensation & Adjust & \(\bigcirc\) & Normal & & 0 & 32767 & & & \(\bigcirc\) \\
\hline sv008 & VIA & Speed loop advance compensation & Adjust & \(\bigcirc\) & Normal & & 1 & 9999 & & & \(\bigcirc\) \\
\hline sv009 & IQA & Current loop q-axis advance compensation & & \(\bigcirc\) & Normal & & 1 & 20480 & & \(\bigcirc\) & \\
\hline sv010 & IDA & Current loop d-axis advance compensation & & \(\bigcirc\) & Normal & & 1 & 20480 & & \(\bigcirc\) & \\
\hline sv011 & IQG & Current loop q-axis gain & & \(\bigcirc\) & Normal & & 1 & 2560 & & \(\bigcirc\) & \\
\hline sv012 & IDG & Current loop d-axis gain & & \(\bigcirc\) & Normal & & 1 & 2560 & & \(\bigcirc\) & \\
\hline sv013 & ILMT & Current limit value & & \(\bigcirc\) & Normal & stall rated current \% & 0 & 999 & & & 0 \\
\hline sv014 & ILMTsp & Current limit value (special operation) & & 0 & Normal & stall rated current \% & 0 & 999 & & & 0 \\
\hline sv015 & FFC & Accelerationfeed forward gain & Adjust & \(\bigcirc\) & Normal & \% & 0 & 999 & & \(\bigcirc\) & \\
\hline sv016 & LMC1 & Lost motion compensation 1 & Adjust & \(\bigcirc\) & Normal & stall rated current \% & -1 & 200 & & & \(\bigcirc\) \\
\hline sv017 & SPEC & Servo specifications & Spec & \(\wedge\) & Initial & HEX setting & * & & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline sv018 & PIT & Ball screw pitch & Spec & \(\bigcirc\) & Tnitial & mm & 1 & 32767 & \(\bigcirc\) & & \\
\hline sv019 & RNG1 & Position detector resolution & Spec & \(\bigcirc\) & Initial & kp/rev,kp/PIT & 1 & 9999 & & \(\bigcirc\) & \\
\hline sv020 & RNG2 & Speed detector resolution & Spec & \(\bigcirc\) & Initial & kp/rev & 1 & 9999 & & \(\bigcirc\) & \\
\hline sv021 & OLT & Overload time constant & & A & Normal & s & 1 & 300 & & \(\bigcirc\) & \\
\hline sv022 & OLL & Overload detection level & & - & Normal & stall rated current \% & 1 & 500 & & \(\bigcirc\) & \\
\hline sv023 & OD1 & Excessive error detection width (at SV ON) & & \(\bigcirc\) & Normal & mm & 0 & 32767 & \(\bigcirc\) & & \\
\hline sv024 & INP & In-position width & & \(\bigcirc\) & Normal & \(\mu \mathrm{m}\) & 0 & 32767 & \(\bigcirc\) & & \\
\hline sv025 & MTYP & Motor/detector type & Spec & \(\wedge\) & Initial & HEX setting & * & & & \(\bigcirc\) & \\
\hline sv026 & OD2 & Excessive error detection width (at SV OFF) & & \(\bigcirc\) & Normal & mm & 0 & 32767 & 0 & & \\
\hline sv027 & SSF1 & Special servo function selection 1 & Spec & \(\wedge\) & Normal & HEX setting & * & * & & \(\bigcirc\) & \(\bigcirc\) \\
\hline sv028 & & & & & & & & & & & \\
\hline sv029 & VCS & Speed loop gain change starting speed & & \(\bigcirc\) & Normal & r/min & 0 & 9999 & & & \(\bigcirc\) \\
\hline sv030 & IVC & Voltage/current compensation & & 6 & Normal & & -32768 & 32767 & & & \(\bigcirc\) \\
\hline sv031 & OVS1 & Overshoot compensation 1 & Adjust & \(\bigcirc\) & Normal & \% & -1 & 100 & & & \(\bigcirc\) \\
\hline sv032 & TOF & Torque offset & Adjust & \(\bigcirc\) & Normal & stall rated current \% & -100 & 100 & & & \(\bigcirc\) \\
\hline sv033 & SSF2 & Special servo function selection 2 & Spec & \(\wedge /\) & Normal & HEX setting & * & * & & 0 & 0 \\
\hline sv034 & SSF3 & Special servo function selection 3 & & \(\wedge\) & Normal & HEX setting & * & * & & \(\bigcirc\) & 0 \\
\hline sv035 & SSF4 & Special servo function selection 4 & & \(\wedge\) & Normal & HEX setting & * & * & & 0 & 0 \\
\hline sv036 & PTYP & Power supply type & Spec & \(\wedge\) & Initial & HEX setting & & & & 0 & \\
\hline sv037 & JL & Load inertia ratio (Jm+JI)/Jm & Adjust & \(\bigcirc\) & Normal & \% & 0 & 5000 & & & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Name} & \multirow[t]{2}{*}{Abbr.} & \multirow[t]{2}{*}{Details} & \multirow[t]{2}{*}{Type} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { MDS-A/B } \\
\text { compatible }
\end{array}
\]} & \multirow[t]{2}{*}{Change method} & \multirow[t]{2}{*}{Setting unit} & \multirow[t]{2}{*}{Min.} & \multirow[t]{2}{*}{Max.} & \multicolumn{3}{|c|}{Type} \\
\hline & & & & & & & & & Machine & Servo & Adjust \\
\hline sv038 & FHz & Frequency of machine resonance suppression filter & Adjust & \(\bigcirc\) & Normal & Hz & 0 & 3000 & 0 & & \\
\hline sv039 & LMCD & Lost motion compensation timing & & 6) & Normal & ms & 0 & 2000 & & & \(\bigcirc\) \\
\hline sv040 & LMCT & Current bias/lost motion compensation dead zone & Adjust & 6/O & Normal & -/ \(/ \mathrm{m}\) & -32768 & 32767 & & & 0 \\
\hline sv041 & LMC2 & Lost motion compensation 2 & Adjust & \(\bigcirc\) & Normal & stall rated current \% & -1 & 200 & & & 0 \\
\hline sv042 & OVS2 & Overshoot compensation2 & & \(\bigcirc\) & Normal & stall rated current \% & -1 & 100 & & & \(\bigcirc\) \\
\hline sv043 & OBS1 & Observer 1 & & \(\bigcirc\) & Normal & rad & 0 & 1000 & & & \(\bigcirc\) \\
\hline sv044 & OBS2 & Observer 2 & & \(\bigcirc\) & Normal & \% & 0 & 500 & & & \(\bigcirc\) \\
\hline sv045 & TRUB & Current compensation/ Friction torque & & 6/6 & Normal & -/stall rated current \% & -32768 & 32767 & & & 0 \\
\hline sv046 & & & & & & & & & & & \\
\hline sv047 & EC1 & Inductive voltage compensation & & \(\bigcirc\) & Normal & \% & * & * & & & 0 \\
\hline sv048 & EMGrt & Drop prevention brake operation delay time & & 6 & Normal & ms & 0 & 2000 & 0 & & \\
\hline sv049 & PGN1sp & Position loop gain 1 (special operation) & & \(\bigcirc\) & Normal & rad/s & 1 & 200 & & & 0 \\
\hline sv050 & PGN2sp & Position loop gain 2 (special operation) & & 0 & Normal & rad/s & 0 & 999 & & \(\bigcirc\) & \\
\hline sv051 & DFBT & Dual feedback control time constant & & \(\bigcirc\) & Normal & ms & 0 & 9999 & & & 0 \\
\hline sv052 & DFBN & Dual feedback control dead band width & & 0 & Normal & \(\mu \mathrm{m}\) & 0 & 9999 & & & 0 \\
\hline sv053 & OD3 & Excessive error detection width (special operation) & & 0 & Normal & mm & 0 & 32767 & 0 & & \\
\hline sv054 & ORE & Closed loop overrun detection width & & \(\bigcirc\) & Normal & mm & -1 & 32767 & 0 & & \\
\hline sv055 & EMGx & Emergency stop maximum delay time & & 6) & Normal & ms & 0 & 2000 & 0 & & \\
\hline sv056 & EMGt & Emergency stop deceleration time constant & & 6) & Normal & ms & -2000 & 2000 & 0 & & \\
\hline sv057 & SHGC & SHG control gain & & \(\bigcirc\) & Normal & rad/s & 0 & 999 & & \(\bigcirc\) & \\
\hline sv058 & SHGCsp & SHG control gain (special operation) & & \(\bigcirc\) & Normal & rad/s & 0 & 999 & & \(\bigcirc\) & \\
\hline sv059 & TCNV & Torque estimated gain & & 6) & Normal & & 0 & 32767 & & & \(\bigcirc\) \\
\hline sv060 & TLMT & G0 collision detection level & & 6) & Normal & stall rated current \% & 0 & 500 & & & 0 \\
\hline sv061 & DA1NO & D/A output channel-1 data No. & & 0 & Normal & & * & * & & & \\
\hline sv062 & DA2NO & D/A output channel-2 data No. & & 0 & Normal & & * & * & & & \\
\hline sv063 & DA1MPY & D/A output channel-1 magnification & & 0 & Normal & & * & * & & & \\
\hline sv064 & DA2MPY & D/A output channel-2 magnification & & \(\bigcirc\) & Normal & & * & * & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|ll|}
\hline Type & Spec : Set in servo spec screen. & Adjust : Set in servo adjust screen. \\
\hline \begin{tabular}{l}
MDS-A/B \\
compatible
\end{tabular} & \begin{tabular}{l}
O Same as MDS-A-Vx. \\
: Same setting as MDS-A-Vx even if the contents has \\
changed. \\
: New parameters of MDS-C1-Vx.
\end{tabular} & \begin{tabular}{c}
©: Includes new parameters of MDS-B-Vx. \\
ind
\end{tabular} \\
\hline \begin{tabular}{l}
Change \\
method
\end{tabular} & Initial: Valid when NC power is turned ON. & Normal: Valid whenever setting. \\
\hline
\end{tabular}
(1) Parameters
\begin{tabular}{|l|}
\hline In the following explanations on bits, set all bits not used, including blank bits, to "0". \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Abbr. & Details & Setting range (unit) \\
\hline SV001 & PC1 & \begin{tabular}{l}
Set the motor side gear ratio. \\
Set so that PC1 and PC2 have the smallest integer ratio. \\
(Refer to "(2) Limitations to electronic gear setting value".)
\end{tabular} & 1 to 32767 \\
\hline SV002 & PC2 & \begin{tabular}{l}
Set the machine side gear ratio. \\
Set so that PC1 and PC2 have the smallest integer ratio. \\
(Refer to "(2) Limitations to electronic gear setting value ".)
\end{tabular} & 1 to 32767 \\
\hline SV003 & PGN1 & Set the position loop gain in increments of "1". Set "33" for ordinary operation. & 1 to 200 (rad/s) \\
\hline SV004 & PGN2 & In case of SHG control, set this parameter with SV057 (SHGC). Set " 0 " when it is not used. & 0 to 999 (rad/s) \\
\hline SV005 & VGN1 & \begin{tabular}{l}
Set the speed loop gain. \\
The standard value is 150 . \\
When it is increased, response is improved but vibration and sound become larger.
\end{tabular} & 1 to 999 \\
\hline SV006 & VGN2 & \begin{tabular}{l}
If it is desired to reduce noise generated at high-speed rotation for rapid traverse, set a speed loop gain (smaller than VGN1) to be gain at high-speed rotation (1.2 times higher than the rated rotating speed). Set the start speed of speed gain decrease to the parameter SV029(VCS). \\
Set " 0 " when this parameter function is not used.
\end{tabular} & -1000 to 1000 \\
\hline SV007 & VIL & \begin{tabular}{l}
Set this parameter when the limit cycle occurs in a closed loop, or the overshoot occurs during positioning. \\
Set " 0 " when this parameter function is not used. \\
Related parameter is vent1,vcnt2 in SV027 (SSF1).
\end{tabular} & 0 to 32767 \\
\hline SV008 & VIA & Set the speed loop advance compensation. & \[
\begin{aligned}
& \hline 1 \text { to } 9999 \\
& (0.0687 \mathrm{rad} / \mathrm{s}) \\
& \hline
\end{aligned}
\] \\
\hline SV009 & IQA & Set the intra-current loop compensation. The data to be set is predetermined for each motor employed. Refer to section "(10) Standard Parameters for Each Motor". & 1 to 20480 \\
\hline SV010 & IDA & Set the intra-current loop compensation The data to be set is predetermined for each motor employed. Refer to section "(10) Standard Parameters for Each Motor ". & 1 to 20480 \\
\hline SV011 & IQG & \begin{tabular}{l}
Set the intra-current loop compensation. \\
The data to be set is predetermined for each motor employed. \\
Refer to section "(10) Standard Parameters for Each Motor ".
\end{tabular} & 1 to 2560 \\
\hline SV012 & IDG & \begin{tabular}{l}
Set the intra-current loop compensation. \\
The data to be set is predetermined for each motor employed. \\
Refer to section "(10) Standard Parameters for Each Motor ".
\end{tabular} & 1 to 2560 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Abbr. & Details & Setting range (unit) \\
\hline SV013 & ILMT & \begin{tabular}{l}
Set the current limit value by specifying the rate (\%) in respect to the stall rated current. \\
For making the maximum driver torque level available, assign " 500 ". \\
(This is the limit value for both + and - directions.)
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 999 \\
& \text { (Stall rated current \%) }
\end{aligned}
\] \\
\hline SV014 & ILMTsp & \begin{tabular}{l}
Set the rate (\%) in respect to the stall rated current for special operations (absolute position initialization, stopper operation, etc) to set the current limit value for special operations. \\
For making the maximum driver torque level available, assign "500". (This is the limit value for both the + and - direction.)
\end{tabular} & \[
\begin{array}{|l}
\hline 0 \text { to } 999 \\
\text { (Stall rated current \%) }
\end{array}
\] \\
\hline SV015 & FFC & \begin{tabular}{l}
Set this parameter when an amount of overshoot caused in feed forward control or a relative error caused in synchronous control is too large. \\
Set "0" when this parameter is not used.
\end{tabular} & 0 to 999 (\%) \\
\hline \multirow[t]{4}{*}{SV016} & \multirow[t]{4}{*}{LMC1} & \begin{tabular}{l}
Set this parameter if the protrusion is large when the arc quadrant is changed. \\
(Caused by dead band from friction, torsion, backlash, etc.) This is valid only when lost motion compensation SV027 (Imc1, Imc2) is selected.
\end{tabular} & -1 to 200 \\
\hline & & \begin{tabular}{l}
\[
\text { Type } 1 \text { SV027 (SSF1) Imc1=1, Imc2=0 }
\] \\
In low-speed interpolation mode, compensation of this type eliminates bump. \\
Setting "0" to this parameter indicates interpolation gain 0. \\
Setting "100" indicates 100\% compensation.
\end{tabular} & 0 to 200 (\%) \\
\hline & & \begin{tabular}{l}
Type 2 SV027 (SSF1) Imc1=0, Imc2=1 \\
This is the standard type of MDS series. \\
Use type 2 when type 1 is not enough for compensation such as in high-speed, high-accuracy interpolation. \\
Set data in percentage to stall rated current.
\end{tabular} & 0 to 100
(Stall rated current \%) \\
\hline & & \begin{tabular}{l}
To change the compensation gain (type 1) or compensation amount (type 2) according to the direction. \\
To set a different value according to the command direction, set this in addition to SV041 (LMC2). \\
Set the value for changing the command speed from the - to + direction (during command direction CW) in SV016 (LMC1). \\
Set the value for changing the command speed from the + to direction (during command direction CW) in SV041 (LMC2). When " -1 " is set, compensation will not be carried out when the command speed direction changes.
\end{tabular} & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Name & Abbr. & Details & Setting range (unit) \\
\hline \multirow[t]{3}{*}{SV019} & \multirow[t]{3}{*}{RNG1} & Set the number of pulses (k pulse) per rotation of the detector used for position control. & 1 to 9999 \\
\hline & & \begin{tabular}{l}
<Semi-closed loop> \\
Set the number of pulses (k pulse) per rotation of the motor. Set the same value to SV020 (RNG2).
\end{tabular} & (kp/rev) \\
\hline & & \begin{tabular}{l}
<Closed loop> \\
Set the number of pulses per ball screw pitch. \\
When using a linear scale, set the value obtained from the following calculation expression:
\[
\text { Setting value }=\frac{\text { Ball screw pitch }(\mathrm{mm})}{\text { Linear scale resolution }(\mathrm{mm})} \times 10^{-3}
\]
\end{tabular} & (kp/rev) \\
\hline SV020 & RNG2 & Set the number of pulses (k pulse) per rotation of the motor end detector. & 1 to 9999 (kp/rev) \\
\hline SV021 & OLT & Set the time constant for detection of overload 1 (OL1) Set "60" for ordinary operation. When using a 15 kW driver (HA-A15KL), the upper limit value is 3 (s). & 1 to 300 (s) \\
\hline SV022 & OLL & \begin{tabular}{l}
Set the current detection level of overload (OL1) by specifying the rate (\%) in respect to the stall rated current (\%). \\
Set "150" for ordinary operation.
\end{tabular} & \[
\begin{array}{|l}
\hline 1 \text { to } 500 \\
\text { (Stall rated current \%) }
\end{array}
\] \\
\hline SV023 & OD1 & \begin{tabular}{l}
Set the excessive detection error width at the time of servo ON. <Setting equation>
\[
\mathrm{OD} 1=\mathrm{OD} 2=\mathrm{OD} 3=\frac{\mathrm{F}}{60 \times \mathrm{PGN} 1} \times 0.5(\mathrm{~mm})
\] \\
F : Max. rapid traverse rate (\(\mathrm{mm} / \mathrm{min}\)) \\
PGN1 : Position loop gain 1 (rad/s) \\
When " 0 " is set, the excessive error at servo ON will not be detected.
\end{tabular} & 0 to 32767 (mm) \\
\hline SV024 & INP & Set the in-position detection width value. Set "50" for ordinary operation. & 0 to 32767 (\(\mu \mathrm{m}\)) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Abbr. & Details & Setting range (unit) \\
\hline SV025 & MTYP & Set the motor and detector types. & HEX setting \\
\hline SV026 & OD2 & \begin{tabular}{l}
Set the excessive error detection width at the time of servo OFF. Normally, set same value as SV023 (OD1). \\
When " 0 " is set, the excessive error at servo OFF will not be detected.
\end{tabular} & 0 to 32767 (mm) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Name & Abbr. & Details & Setting range (unit) \\
\hline SV040 & LMCT & \begin{tabular}{l}
- Set the lost motion compensation dead band. \\
Set in the low-order 8 bits. \\
Normally set " 0 ". \\
Set only when the lost motion compensation timing is not proper during feed forward control. \\
-Current bias: Set in the high-order 8 bits. (Icy) \\
This is used in combination with SV030 and SV045 high-order 8 bits.
\end{tabular} & \begin{tabular}{l}
-32768 to 32767 \\
(Note) The setting range of the low-order 8 bits is 0 to 100 (\(\mu \mathrm{m}\)).
\end{tabular} \\
\hline SV041 & LMC2 & \begin{tabular}{l}
Normally set " 0 ". \\
Set this with SV016 (LMC1) when setting the lost motion compensation's gain (type 1) or compensation amount (type 2) to different values according to the command direction. \\
- Set the value for changing the command speed from the - to + direction (during command direction CW) in SV016 (LMC1). \\
- Set the value for changing the command speed from the + todirection (during command direction CW) in SV041 (LMC2). \\
- When " -1 " is set, compensation will not be carried out when the command speed direction changes. \\
This is valid only when lost motion compensation (SV027: Imc1, Imc2) is selected.
\end{tabular} & \[
\begin{array}{|l|}
\hline-1 \text { to } 200 \\
\text { (Stall rated current \%) }
\end{array}
\] \\
\hline SV042 & OVS2 & \begin{tabular}{l}
Overshoot compensation 2 \\
Set the overshoot compensation amount for unidirectional movement (command direction CW). \\
When "0" is set, the value set for SV031 (OVS1) will be set. When " -1 " is set, compensation will not be carried out during unidirectional movement. \\
This is valid only when overshoot compensation SV027 (SSF1/ovs1) is selected.
\end{tabular} & \[
\begin{array}{|l|}
\hline-1 \text { to } 100 \\
\text { (Stall rated current \%) }
\end{array}
\] \\
\hline SV043 & OBS1 & \begin{tabular}{l}
Observer1 \\
Set the pole of the observer. Normally set approximately "628" (rad). To operate the observer function, also set the SV037 (JL) and SV044 (OBS2). \\
Set to "0" when not used.
\end{tabular} & 0 to 1000 (rad) \\
\hline SV044 & OBS2 & \begin{tabular}{l}
Observer2 \\
Set the execution gain of the observer. Normally set to "100". To operate the observer function, also set the SV037 (JL) and SV043 (OBS1). \\
Set to "0" when not used.
\end{tabular} & 0 to 500 (\%) \\
\hline SV045 & TRUB & \begin{tabular}{l}
When using the collision detection function, set the friction torque in the low-order 8 bits with a rate (\%) for the stall rated current. Set "0" when not using the collision detection function. \\
-Current bias : Set in the high-order 8 bits (lb1). This is used in combination with SV030 and SV040 high-order 8 bits.
\end{tabular} & \begin{tabular}{l}
-32768 to 32767 \\
(Note) The setting range of the low-order 8 bits is 0 to 100 (Stall rated current \%).
\end{tabular} \\
\hline SV046 & & Not used. Set "0". & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Abbr. & Details & Setting range (unit) \\
\hline SV047 & EC1 & \begin{tabular}{l}
Inductive voltage compensation \\
Set the execution gain of the inductive voltage compensation. Normally, set "100".
\end{tabular} & -32768 to 32767 (\%) \\
\hline SV048 & EMGrt & \begin{tabular}{l}
Set the brake operation delay time when using the drop prevention function. \\
Set a larger value than the actual brake operation time. \\
Set " 0 " when not using the drop prevention function. \\
SV055 (EMGx) and SV056 (EMGt) must also be set when this function is used.
\end{tabular} & 0 to 20000 (ms) \\
\hline SV049 & PGN1sp & \begin{tabular}{l}
Set the position loop gain for special operations (synchronous tap, interpolation with spindle C axis, etc.). \\
Normally, set the spindle position loop gain.
\end{tabular} & 1 to 200 (rad/s) \\
\hline SV050 & PGN2sp & \begin{tabular}{l}
Set this with SV058 (SHGCsp) when carrying out SHG control during special operations (synchronous tap, interpolation with spindle C axis, etc.). \\
When this parameter is not used, set " 0 ".
\end{tabular} & 0 to 999 (rad/s) \\
\hline SV051 & DFBT & Set the time constant for dual feedback control. & 0 to 9999 (ms) \\
\hline SV052 & DFBN & Set the dead band for dual feedback control. & 0 to 9999 (\(\mu \mathrm{m}\)) \\
\hline SV053 & OD3 & \begin{tabular}{l}
Set the excessive error detection width at servo ON for special operations (absolute position initialization setting, stopper operation, etc.). \\
When " 0 " is set, the excessive error will not be detected during special operations and servo ON.
\end{tabular} & 0 to 32767 (mm) \\
\hline SV054 & ORE & \begin{tabular}{l}
Set the overrun detection width for the closed loop. \\
For setting synchronous control slave axis, set the overrun detection width for master/slave axis. \\
When " -1 " is set, the overrun will not be detected. When " 0 " is set, the overrun will be detected with a \(2(\mathrm{~mm})\) width.
\end{tabular} & -1 to 32767 (mm) \\
\hline SV055 & EMGx & \begin{tabular}{l}
Set the emergency stop maximum delay time when using the drop prevention function. \\
Normally, set it to the same value as the SV056 (EMGt). \\
Set "0" when not using the drop prevention function.
\end{tabular} & 0 to 20000 (ms) \\
\hline SV056 & EMGt & \begin{tabular}{l}
Set the deceleration time constant from the maximum rapid traverse speed when using the drop prevention function. \\
Normally, the same value as CNC G0 acceleration/deceleration time constant is set. \\
Set " 0 " when not using the drop prevention function.
\end{tabular} & -20000 to 20000 (ms) \\
\hline SV057 & SHGC & Set this with SV004 (PGN2) when carrying out SGH control. Set 0 when not using this function. & 0 to 999 (rad/s) \\
\hline SV058 & SHGCsp & \begin{tabular}{l}
Set this with SV050 (PGN2sp) when carrying out SHG control during special operations (synchronous tap, interpolation with spindle C axis, etc.). \\
Set 0 when not using this function.
\end{tabular} & 0 to 999 (rad/s) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Abbr. } & \multicolumn{1}{c|}{ Details } & \multicolumn{1}{c|}{ Setting range (unit) } \\
\hline SV059 & TCNV & \begin{tabular}{l}
When using the collision detection function, set the estimated torque \\
gain. \\
When "1" is set in SV035 (SSF4/clt), the setting value guideline can be \\
displayed in MPOF on the Servo monitor screen. \\
Set "0" when not using the collision detection function.
\end{tabular} & 0 to 32767 \\
\hline SV060 & TLMT & \begin{tabular}{l}
When using the collision detection function, set the collision detection \\
level for the method 1.G0 modal with a rate for the stall rated current. \\
Set "0" when not using the collision detection function.
\end{tabular} & \begin{tabular}{l}
0 to 100 \\
(Stall rated current \%)
\end{tabular} \\
\hline SV061 & DA1NO & \begin{tabular}{l}
Set the output data number for the D/A output channel 1. \\
When "-1" is set, the D/A output of that axis will not be carried out.
\end{tabular} & -32768 to 32767 \\
\hline SV062 & DA2NO & \begin{tabular}{l}
Set the output data number for the D/A output channel 2. \\
When "-1" is set, the D/A output of that axis will not be carried out.
\end{tabular} & -32768 to 32767 \\
\hline SV063 & DA1MPY & \begin{tabular}{l}
Set the output magnification for the D/A output channel 1. \\
The output magnification will be the setting value/256. \\
If "0" is set, the output magnification will be 1-fold, in the same manner \\
as when "256" is set.
\end{tabular} & -32768 to 32767 \\
\hline SV064 & DA2MPY & \begin{tabular}{l}
Set the output magnification for the D/A output channel 2. \\
The output magnification will be the setting value/256. \\
If "0" is set, the output magnification will be 1-fold, in the same manner \\
as when "256" is set.
\end{tabular} & -32768 to 32767 \\
\hline
\end{tabular}

\section*{(2) Limitations to electronic gear setting value}

The servo drive unit has internal electronic gear. The command value from the NC is converted into a detector resolution unit to carry out position control. The electronic gears are single gear ratios calculated from multiple parameters. However, each value (ELG1, ELG2) must be 32767 or less.
If the value overflows, the initial parameter error (alarm 37) will be output.
If an alarm occurs, the mechanical specifications and electrical specifications must be revised so that the electronic gears are within the specifications range.

\section*{Parameters related to electronic gears}

SV001 (PC1), SV002 (PC2), SV003 (PGN1) (SV049 (PGN1sp)), SV018 (PIT), SV019 (RNG1), SV020 (RNG2)

Reduced fraction of
\[
\frac{E L G 1}{E L G 2}=\frac{\mathrm{PC} 2 \times \mathrm{RANG}}{\mathrm{PC} 1 \times \mathrm{PIT} \times \mathrm{IUNIT}} \text { (reduced fraction) }
\]
\begin{tabular}{cc}
<Semi-closed loop> & <Closed loop> \\
RANG \(=\) RNG1 & RANG \(=(\) RNG2 \(\times\) PGN1sp \()\)
\end{tabular}

IUNIT \(=2 /\) NC command unit \((\mu \mathrm{m}) 1 \mu \mathrm{~m}:\) IUNIT \(=2,0.1 \mu \mathrm{~m}:\) IUNIT \(=20\)
When the above is calculated, the following conditions must be satisfied.
\[
\begin{aligned}
& \mathrm{ELG} 1 \leq 32767 \\
& \mathrm{ELG} 2 \leq 32767
\end{aligned}
\]

\section*{Method of confirming maximum setting range for PC1 and PC2 (Example)}

For semi-closed loop, 10 mm ball screw lead, \(1 \mu \mathrm{~m}\) command unit and OSA104 motor end detector.
The following parameters can be determined with the above conditions.
SV018 \((\) PIT \()=10\), SV019 \((\) RNG1 \()=100\), SV020 \((\) RNG2 \()=100\), IUNIT \(=2\)
According to the specifications, the maximum setting value for ELG1 and ELG2 is 32767.
\(\frac{\mathrm{ELG} 1}{\mathrm{ELG} 2}=\frac{\mathrm{PC} 2 \times 100}{\mathrm{PC} 1 \times 10 \times 2}=\frac{5 \times \mathrm{PC} 2}{1 \times \mathrm{PC} 1}\) Thus, the maxi- \(\quad \mathrm{PC} 2<6553\)

Set the PC1 and PC2 gear ratio to within the above calculation results.
(3) Command polarity

When the motor is to rotate in the clockwise direction (looking from the load side) at the command for the + direction, the command direction is CW. Conversely, when the motor is to rotate in the counterclockwise direction, the command direction is CCW.
This rotation direction can be set with the CNC machine parameters. Note that the meaning of the \(\pm\) will differ for some servo parameters according to this motor rotation direction. The servo parameters affected by CW/CCW are shown below.
```

SV016 (LMC1), SV041 (LMC2)
(When different values are set for SV016 and SV041)
SV031 (OVS1), SV042 (OVS2)
(When different values are set for SV031 and SV042)

```
<Example> If the lost motion compensation amount is to be changed according to the direction, the compensation amount at the quadrant changeover point of each arc where the lost motion compensation is applied will be as shown below according to the command polarity.

(4) Motor type

Set "mtyp" of SV025 (MTYP) from the following table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Motor series & 2000r/min standard & & \[
\begin{gathered}
2000 \mathrm{r} / \mathrm{min} \\
\text { low } \\
\text { inertia }
\end{gathered}
\] & \[
\begin{gathered}
3000 \mathrm{r} / \mathrm{min} \\
\text { low } \\
\text { inertia }
\end{gathered}
\] & & & & & 3000r/min standard & & & HC 2000r/min medium inertia & HC 3000r/min medium inertia & & \begin{tabular}{|c|}
\hline HC \\
\begin{tabular}{c}
\(3000 r / m i n\) \\
ultra-low \\
inertia
\end{tabular} \\
\hline
\end{tabular} & \\
\hline No. & 0x & 1x & 2 x & 3 x & 4x & 5 x & 6x & 7x & 8 x & 9x & Ax & Bx & Cx & Dx & Ex & Fx \\
\hline x0 & HA40N & & HA50L & HA53L & & & & & HA43N & & & HC52 & HC53 & & & \\
\hline x1 & HA80N & & HA100L & HA103L & & & & & HA83N & & & HC102 & HC103 & & HC103R & \\
\hline \(\times 2\) & HA100N & & HA200L & HA203L & & & & & HA103N & & & HC152 & HC153 & & HC153R & \\
\hline x3 & HA200N & & HA300L & HA303L & & & & & HA203N & & & HC202 & HC203 & & HC203R & \\
\hline \(\times 4\) & HA300N & & HA500L & HA503L & & & & & HA303N & & & HC352 & HC353 & & HC353R & \\
\hline \(\times 5\) & HA700N & & & & & & & & HA703N & & & HC452 & HC453 & & HC503R & \\
\hline x6 & HA900N & & & & & & & & & & & HC702 & HC703 & & & \\
\hline x7 & & & HA-A11KL & & & & & & & & & HC902 & & & & \\
\hline x8 & & & HA-A15KL & & & & & & & & & & & & & \\
\hline x9 & & & & & & & & & & & & & & & & \\
\hline xA & & & HA150L & HA153L & & & & & HA93N & & & & & & & \\
\hline xB & & & & & & & & & & & & & & & & \\
\hline \(x C\) & & & & & & & & & HA053 & & & & & & & \\
\hline xD & & & & & & & & & HA13 & & & & & & & \\
\hline xE & & & & & & & & & HA23N & & & & & & & \\
\hline xF & & & & & & & & & HA33N & & & & & & & \\
\hline
\end{tabular}
(5) Detector type

Set "pen" / "ent" of SV025 (MTYP) from the following table.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Detection method & \multicolumn{4}{|c|}{Detector model name} & Device & Remarks \\
\hline 0 & High-speed serial & OSE104 & & & & \multirow{4}{*}{Motor end detector} & \multirow[t]{4}{*}{} \\
\hline 1 & High-speed serial & OSA104 & & & & & \\
\hline 2 & High-speed serial & OSE105 & OSA105 & HA-FH & & & \\
\hline 3 & ABZ+UVW(No OHM) & HA053 & HA13 & & & & \\
\hline \multirow[t]{2}{*}{4} & ABZ & OHE25K-ET & & & & \multirow{6}{*}{Ball screw end
detector detector} & \multirow{10}{*}{Cannot be set to speed detector type (ent).} \\
\hline & High-speed serial & OSE104-ET & & & & & \\
\hline \multirow[t]{2}{*}{5} & ABZ+low -speed
serial & OHA25K-ET & & & & & \\
\hline & High-speed serial & OSA104-ET & & & & & \\
\hline 6 & High-speed serial & OSE105-ET & OSA105-ET & & & & \\
\hline 7 & & & & & & & \\
\hline 8 & ABZ & SCALE & & & & \multirow{4}{*}{Machine end detector} & \\
\hline 9 & ABZ+low-speed
serial & ABS SCALE
(Note 1) & & & & & \\
\hline A & High-speed serial & ABS SCALE (Note 2) & & & & & \\
\hline B & & & & & & & \\
\hline C & High-speed serial & OSE104 & OSE105 & OSA104 & OSA105 & \multirow{5}{*}{Synchronous control} & \\
\hline \multirow[b]{2}{*}{D} & \multirow[b]{2}{*}{High-speed serial} & OSE104-ET & OSE105-ET & OSA104-ET & OSA105-ET & & \\
\hline & & ABS SCALE (Note 2) & & & & & \\
\hline E & & & & & & & \\
\hline F & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ CAUTION } \\
\hline With MDS-C1 series, only the serial encoder is applied as the motor end detector. \\
Thus, OHE/OHA type detector cannot be used as the motor end detector. \\
\hline
\end{tabular}
(Note 1) ABS SCALE corresponds to the following absolute position detection scales.
Mitutoyo Corporation
AT41
FUTABA Corporation
FME type, FLE type
(Note 2) ABS SCALE corresponds to the following absolute position detection scale.
\[
\text { Mitutoyo Corporation } \quad \text { AT342 }
\]
(Note 3) These are not used with the closed loop system.
(6) Detection system and MTYP

Set SV025 (MTYP) from the following table.
(a) Semi-closed loop
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Motor end detector} & \multicolumn{2}{|l|}{OHE25K} & \multicolumn{2}{|l|}{OHA25K} & \multicolumn{2}{|l|}{OSE104} & \multicolumn{2}{|l|}{OSA104} & \multicolumn{2}{|l|}{OSE105} & \multicolumn{2}{|l|}{OSA105} & \multicolumn{2}{|r|}{HA-FH} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { HA053/13 } \\
\text { HA-FE }
\end{gathered}
\]} \\
\hline & MTYP & Detect system \\
\hline & 00xx & INC & 11xx & ABS & 00xx & INC & 11xx & ABS & 22xx & INC & 22xx & ABS & 22xx & ABS & 33 xx & INC \\
\hline
\end{tabular}
(b) Closed loop
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & OHE & K-ET & OHA & K-ET & OSE & 04-ET & OSA & 4-ET & OSE & 05-ET & OS & 05-ET & & ALE & \[
\underset{\text { low- }}{\text { A }}
\] & \begin{tabular}{l}
CALE \\
d serial
\end{tabular} & \[
\begin{array}{r}
\text { Al } \\
\text { high }
\end{array}
\] & CALE d serial \\
\hline end detector & MTYP & Detect system & MTYP & Detec system & MTYP & Detect system \\
\hline OSE104 & 40xx & INC & 50xx & ABS & 40xx & INC & \(50 x x\) & ABS & 60xx & INC & 60xx & ABS & 80xx & INC & 90xx & ABS & A0xx & ABS \\
\hline OSA104 & 41x & INC & 51xx & ABS & 41 & INC & 51xx & ABS & 61 xx & NC & \(61 \times x\) & ABS & 81xx & MP ABS & 91x & ABS & A1 & ABS \\
\hline OSE105 & 42xx & INC & 52xx & ABS & 42xx & INC & 52xx & ABS & 62x & INC & 62xx & ABS & 82xx & INC & 92xx & ABS & A2xx & ABS \\
\hline OSA105 & 42xx & INC & 52xx & ABS & 42xx & INC & 52xx & ABS & 62 & INC & 62xx & ABS & 82xx & MP ABS & 92xx & ABS & A2xx & ABS \\
\hline HA053/13 & 43xx & INC & 53xx & ABS & 43xx & INC & 53xx & ABS & 63xx & INC & 63x & ABS & 83x & INC & 93xx & ABS & A3xx & ABS \\
\hline HA-FE & 43xx & INC & 53x & ABS & 43x & INC & 53xx & ABS & 63xx & INC & 63xx & ABS & 83x & INC & 93xx & ABS & A3xx & ABS \\
\hline
\end{tabular}
(c) Synchronous control semi-closed loop (set only the slave axis.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{4}{*}{Motor end detector} & \multicolumn{8}{|c|}{Speed-command synchronous control} & \multicolumn{8}{|c|}{Current-command synchronous control} \\
\hline & \multicolumn{2}{|l|}{OSE104} & \multicolumn{2}{|l|}{OSA104} & \multicolumn{2}{|l|}{OSE105} & \multicolumn{2}{|l|}{OSA105} & \multicolumn{2}{|r|}{OSE104} & \multicolumn{2}{|l|}{OSA104} & \multicolumn{2}{|l|}{OSE105} & \multicolumn{2}{|r|}{OSA105} \\
\hline & MTYP & Detect system & MTYP & Detect sy stem & MTYP & Detect system & MTYP & Detect system & MTYP & Detect system \\
\hline & C0xx & INC & C1xx & ABS & C2xx & INC & C2xx & ABS & CCxx & INC & CCxx & ABS & CCxx & INC & CCxx & ABS \\
\hline
\end{tabular}
(d) Synchronous control closed loop (set only the slave axis.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Machine & & & & Speed & mmand & & c & & & \\
\hline detector & OSE & 04-ET & OSA & 104-ET & & 105-ET & OSA & 105-ET & \begin{tabular}{l}
ABS \\
high-s
\end{tabular} & \begin{tabular}{l}
SCALE \\
eed serial
\end{tabular} \\
\hline detector & MTY & Detect system & MTYP & Detect system \\
\hline OSE104 & D0xx & INC & D0xx & ABS & D0xx & INC & D0xx & ABS & D0xx & ABS \\
\hline OSA104 & D1xx & INC & D1xx & ABS & D1xx & INC & D1xx & ABS & D1xx & ABS \\
\hline OSE105 & D2xx & INC & D2xx & ABS & D2xx & INC & D2xx & ABS & D2xx & ABS \\
\hline OSA105 & D2xx & INC & D2xx & ABS & D2xx & INC & D2xx & ABS & D2xx & ABS \\
\hline
\end{tabular}

\section*{(7) Power supply type}

Set "ptyp" of SV036 (PTYP) from the following table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline No. & \[
\begin{gathered}
\text { 0xkW } \\
0 x
\end{gathered}
\] & \[
\begin{gathered}
\text { 1xkW } \\
1 \mathrm{x}
\end{gathered}
\] & \[
\begin{gathered}
2 x k W \\
2 x
\end{gathered}
\] & \[
\begin{gathered}
\hline 3 x k W \\
3 x
\end{gathered}
\] & \[
\begin{gathered}
\hline 4 x k W \\
4 x
\end{gathered}
\] & \[
\begin{gathered}
5 x k W \\
5 x
\end{gathered}
\] & \(6 x\) & 7x & \[
\begin{gathered}
\hline \text { 0xkW } \\
8 x
\end{gathered}
\] \\
\hline 0 & PS
non-connect & & & CV-300 & & & & & \\
\hline 1 & & CV-110 & & & & & & & CR-10 \\
\hline 2 & & & CV-220 & & & & & & CR-15 \\
\hline 3 & & & & & & & & & CR-22 \\
\hline 4 & CV-37 & & & & & & & & CR-37 \\
\hline 5 & & CV-150 & & & CV-450 & CV-550 & & & \\
\hline 6 & CV-55 & & CV-260 & & & & & & CR-55 \\
\hline 7 & & & & CV-370 & & & & & \\
\hline 8 & CV-75 & & & & & & & & CR-75 \\
\hline 9 & & CV-185 & & & & & & & CR-90 \\
\hline A & & & & & & & & & \\
\hline B & & & & & & & & & \\
\hline C & & & & & & & & & \\
\hline D & & & & & & & & & \\
\hline E & & & & & & & & & \\
\hline F & & & & & & & & & \\
\hline
\end{tabular}

\section*{(8) Regenerative resistance type}

Set "port" of SV036 (PTYP) from the following table.
\begin{tabular}{|c|c|c|c|}
\hline No. & \begin{tabular}{c}
Regenerative \\
register type
\end{tabular} & \begin{tabular}{c}
Resistance \\
value \((\Omega)\)
\end{tabular} & Watts (W) \\
\hline 0 & & & \\
\hline 1 & GZG200W260HMJ & 26 & 80 \\
\hline 2 & GZG300W130HMJ \(\times 2\) & 26 & 150 \\
\hline 3 & MR-RB30 & 13 & 300 \\
\hline 4 & MR-RB50 & 13 & 500 \\
\hline 5 & GZG200W200HMJ×3 & 6.7 & 350 \\
\hline 6 & GZG300W200HMJ \(\times 3\) & 6.7 & 500 \\
\hline 7 & R-UNIT-1 & 30 & 700 \\
\hline 8 & R-UNIT-2 & 15 & 700 \\
\hline 9 & R-UNIT-3 & 15 & 2100 \\
\hline A & & & \\
\hline B & & & \\
\hline C & & & \\
\hline D & & & \\
\hline E & & & \\
\hline F & & & \\
\hline
\end{tabular}

\section*{(9) Current limit value}
\begin{tabular}{|c|c|c|c|c|}
\hline Motor & \begin{tabular}{c}
Stall rated \\
current \\
\(\mathbf{A}\)
\end{tabular} & \begin{tabular}{c}
Maximum \\
current \\
\(\mathbf{A}\)
\end{tabular} & \begin{tabular}{c}
Maximum \\
torque \\
\(\mathbf{N} \cdot \mathbf{m}\)
\end{tabular} & \begin{tabular}{c}
Torque \\
limit \\
\(\%\)
\end{tabular} \\
\hline HA40N & 3.6 & 17 & 14.2 & 472 \\
\hline HA80N & 6.6 & 28 & 25.5 & 424 \\
\hline HA100N & 14 & 42 & 42 & 300 \\
\hline HA200N & 22 & 57 & 60 & 260 \\
\hline HA300N & 37 & 85 & 87 & 230 \\
\hline HA700N & 49 & 113 & 120 & 231 \\
\hline HA900N & 56 & 141 & 153 & 252 \\
\hline HA053 & 1.4 & 3.9 & 0.69 & 279 \\
\hline HA13 & 1.4 & 3.9 & 1.37 & 279 \\
\hline HA23N & 3 & 8.1 & 2.75 & 270 \\
\hline HA33N & 3 & 8.1 & 5.6 & 270 \\
\hline HA43N & 5 & 17 & 10.2 & 340 \\
\hline HA83N & 8.8 & 28 & 19.2 & 318 \\
\hline HA103N & 19.6 & 57 & 40 & 291 \\
\hline HA203N & 34.5 & 85 & 56 & 246 \\
\hline HA303N & 55 & 113 & 80 & 205 \\
\hline HA703N & 68 & 141 & 105 & 207 \\
\hline HA50NL & 4 & 17 & 13.0 & 425 \\
\hline HA100NL & 8 & 28 & 20.9 & 350 \\
\hline HA150NL & 11.5 & 42 & 31 & 365 \\
\hline HA200NL & 18.2 & 42 & 32 & 231 \\
\hline HA300NL & 25 & 57 & 52 & 228 \\
\hline HA500NL & 44 & 85 & 72 & 193 \\
\hline HA53NL & 5.8 & 28 & 14.1 & 482 \\
\hline HA103NL & 11.0 & 42 & 22.5 & 381 \\
\hline HA153NL & 16.2 & 42 & 22.8 & 259 \\
\hline HA203NL & 21 & 57 & 37 & 271 \\
\hline HA303NL & 32 & 85 & 60 & 265 \\
\hline HA503NL & 54 & 113 & 78 & 209 \\
\hline HA-LH11K2 & 84 & 204 & 158 & 242 \\
\hline HA-LH15K2 & 100 & 260 & 215 & 260 \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Motor & \begin{tabular}{c}
Stall rated \\
current \\
\(\mathbf{A}\)
\end{tabular} & \begin{tabular}{c}
Maximum \\
current \\
\(\mathbf{A}\)
\end{tabular} & \begin{tabular}{c}
Maximum \\
torque \\
\(\mathbf{N} \cdot \mathbf{m}\)
\end{tabular} & \begin{tabular}{c}
Torque \\
limit \\
\(\%\)
\end{tabular} \\
\hline HC52 & 3.94 & 17 & 11.8 & 431 \\
\hline HC102 & 7.4 & 28 & 21.6 & 378 \\
\hline HC152 & 11.1 & 47 & 35.3 & 423 \\
\hline HC202 & 15.4 & 47 & 41.7 & 305 \\
\hline HC352 & 22.9 & 64 & 59.8 & 279 \\
\hline HC452 & 40.4 & 85 & 87.5 & 210 \\
\hline HC702 & 46.2 & 113 & 120 & 245 \\
\hline HC902 & 55.9 & 141 & 153 & 252 \\
\hline HC53 & 5.8 & 17 & 8.82 & 293 \\
\hline HC103 & 9.8 & 28 & 16.7 & 286 \\
\hline HC153 & 15.9 & 47 & 28.4 & 296 \\
\hline HC203 & 22.4 & 64 & 40.2 & 286 \\
\hline HC353 & 33.3 & 85 & 55.9 & 255 \\
\hline HC453 & 57.3 & 113 & 79.8 & 197 \\
\hline HC703 & 69.2 & 141 & 105 & 210 \\
\hline HC103R & 6.1 & 18.4 & 7.95 & 459 \\
\hline HC153R & 8.8 & 23.4 & 11.9 & 318 \\
\hline HC203R & 14.0 & 37.0 & 15.9 & 300 \\
\hline HC353R & 22.5 & 56.3 & 27.8 & 253 \\
\hline HC503R & 28.0 & 70.0 & 39.8 & 303 \\
\hline & & & & \\
\hline
\end{tabular}
(Note) When " \(500 \%\) " for SV013 ILMT1 is set, the current limit value is maximum current (torque) one shown in the table above.
Set a parameter at the rate (\%) of the stall rated current to limit the current value (torque) less than the maximum current value.
(10)Standard Parameters for Each Motor
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Motor} & \multicolumn{21}{|c|}{Standard motor} \\
\hline & \[
\begin{aligned}
& \hline \text { HA } \\
& 40 \mathrm{~N}
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{HA} \\
& 43 \mathrm{~N}
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { HA } \\
& \text { 80N }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HA } \\
& 83 \mathrm{~N}
\end{aligned}
\] & \[
\begin{aligned}
& \text { HA } \\
& 93 N
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{HA} \\
100 \mathrm{~N}
\end{gathered}
\] & \[
\begin{gathered}
\text { HA } \\
103 \mathrm{~N}
\end{gathered}
\] & \[
\begin{array}{c|}
\hline \text { HA } \\
\text { 200N }
\end{array}
\] & \[
\begin{gathered}
\mathrm{HA} \\
203 \mathrm{~N}
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { HA } \\
300 \mathrm{~N}
\end{array}
\] & \[
\begin{gathered}
\mathrm{HA} \\
303 \mathrm{~N}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{HA} \\
700 \mathrm{~N}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{HA} \\
703 \mathrm{~N}
\end{gathered}
\] & \[
\begin{gathered}
\text { HA } \\
900 \mathrm{~N}
\end{gathered}
\] & \[
\begin{aligned}
& \text { HA } \\
& 053
\end{aligned}
\] & \[
\begin{aligned}
& \text { HA } \\
& 13
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{HA} \\
23 \mathrm{~N}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{HA} \\
33 \mathrm{~N}
\end{gathered}
\] & \[
\begin{aligned}
& \text { HA- } \\
& \text { N23 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HA- } \\
& \text { N33 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{HA}- \\
& \mathrm{N} 43
\end{aligned}
\] \\
\hline Driver & 05 & 05 & 10 & 10 & 20 & 20 & 35 & 35 & 45 & 45 & 70 & 70 & 90 & 90 & 01 & 01 & 03 & 03 & 03 & 03 & 05 \\
\hline sv001 & \\
\hline sv002 & \\
\hline sv003 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 25 & 25 & 25 & 33 & 33 & 33 & 33 & 33 & 33 & 33 \\
\hline sv004 & 0 \\
\hline sv005 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 250 & 250 & 250 & 70 & 70 & 100 & 100 & 70 & 70 & 35 \\
\hline sv006 & 0 \\
\hline sv007 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline sv008 & 1364 \\
\hline sv009 & 2048 \\
\hline sv010 & 2048 \\
\hline sv011 & 512 & 256 & 512 & 256 & 256 & 256 & 256 & 256 & 256 & 256 & 256 & 200 & 200 & 200 & 256 & 256 & 224 & 224 & 256 & 256 & 512 \\
\hline sv012 & 512 & 512 & 512 & 512 & 512 & 512 & 512 & 512 & 512 & 512 & 512 & 256 & 256 & 256 & 256 & 256 & 224 & 224 & 256 & 256 & 512 \\
\hline sv013 & 500 \\
\hline sv014 & 500 \\
\hline sv015 & 0 \\
\hline sv016 & 0 \\
\hline sv017 & 0000 \\
\hline sv018 & \\
\hline sv019 & & & & & & & & & & & & & & & 10 & 10 & & & & & \\
\hline sv020 & & & & & & & & & & & & & & & 10 & 10 & & & & & \\
\hline sv021 & 60 \\
\hline sv022 & 150 \\
\hline sv023 & 6 \\
\hline sv024 & 50 \\
\hline sv025 & xx00 & xx80 & xx01 & xx81 & xx8A & xx02 & xx82 & xx03 & xx83 & xx04 & xx84 & xx05 & xx85 & xx06 & 338C & 338D & xx8E & xx8F & xx6E & xx6F & xx60 \\
\hline sv026 & 6 \\
\hline sv027 & 4000 \\
\hline sv028 & 0 \\
\hline sv029 & 0 \\
\hline sv030 & 0 \\
\hline sv031 & 0 \\
\hline sv032 & 0 \\
\hline sv033 & 0000 \\
\hline sv034 & 0000 \\
\hline sv035 & 0000 \\
\hline sv036 & 0000 \\
\hline sv037 & 0 \\
\hline sv038 & 0 \\
\hline sv039 & 0 \\
\hline sv040 & 0 \\
\hline sv041 & 0 \\
\hline sv042 & 0 \\
\hline sv043 & 0 \\
\hline sv044 & 0 \\
\hline sv045 & 0 \\
\hline sv046 & 0 \\
\hline sv047 & 100 \\
\hline sv048 & 0 \\
\hline sv049 & 15 \\
\hline sv050 & 0 \\
\hline sv051 & 0 \\
\hline sv052 & 0 \\
\hline sv053 & 0 \\
\hline sv054 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & , & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline sv055 & 0 \\
\hline sv056 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline sv057 & 0 \\
\hline sv058 & 0 \\
\hline sv059 & 0 \\
\hline sv060 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & , & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline sv061 & 0 \\
\hline sv062 & 0 \\
\hline sv063 & 0 \\
\hline sv064 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Motor} & \multicolumn{8}{|c|}{2000r/min low-inertia motor} & \multicolumn{7}{|c|}{3000r/min low-inertia motor} & \multicolumn{7}{|l|}{} \\
\hline & \[
\begin{aligned}
& \text { HA } \\
& 50 \mathrm{~L}
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{HA} \\
100 \mathrm{~L}
\end{gathered}
\] & \[
\begin{gathered}
\text { HA } \\
150 \mathrm{~L}
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { HA } \\
200 \mathrm{~L}
\end{gathered}
\] & \[
\begin{gathered}
\text { HA } \\
300 \mathrm{~L}
\end{gathered}
\] & \[
\begin{gathered}
\text { HA } \\
500 \mathrm{~L}
\end{gathered}
\] & HAA11KL & \[
\begin{gathered}
\text { HA- } \\
\text { A15KL }
\end{gathered}
\] & \[
\begin{aligned}
& \text { HA } \\
& 53 \mathrm{~L}
\end{aligned}
\] & \[
\begin{array}{|c}
\hline \text { HA } \\
\text { 103L }
\end{array}
\] & \[
\begin{gathered}
\text { HA } \\
\text { 153L }
\end{gathered}
\] & \[
\begin{gathered}
\text { HA } \\
203 \mathrm{~L}
\end{gathered}
\] & \[
\begin{gathered}
\text { HA } \\
303 \mathrm{~L}
\end{gathered}
\] & \[
\begin{gathered}
\text { HA } \\
503 \mathrm{~L}
\end{gathered}
\] & & & & & & & & \\
\hline Driver & 05 & 10 & 10 & 20 & 35 & 45 & 110 & 150 & 10 & 20 & 20 & 35 & 45 & 70 & & & & & & & & \\
\hline Sv001 & \\
\hline sv002 & \\
\hline sv003 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & & & & & & & & \\
\hline Sv004 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline sv005 & 30 & 30 & 30 & 30 & 30 & 50 & 150 & 150 & 30 & 30 & 30 & 30 & 30 & 50 & & & & & & & & \\
\hline sv006 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv007 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv008 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & & & & & & & & \\
\hline Sv009 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & & & & & & & & \\
\hline sv010 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & 2048 & & & & & & & & \\
\hline Sv011 & 512 & 512 & 512 & 512 & 256 & 256 & 512 & 512 & 512 & 512 & 512 & 512 & 256 & 256 & & & & & & & & \\
\hline Sv012 & 512 & 512 & 512 & 512 & 512 & 512 & 512 & 512 & 512 & 512 & 512 & 512 & 512 & 512 & & & & & & & & \\
\hline Sv013 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & & & & & & & & \\
\hline Sv014 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & & & & & & & & \\
\hline Sv015 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv016 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv017 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & & & & & & & & \\
\hline Sv018 & & - & & & & - & & & & & & & - & & & & & & & & & \\
\hline Sv019 & & - & & & & - & & & & & & & - & & & & & & & & & \\
\hline Sv020 & \\
\hline Sv021 & 60 & 60 & 60 & 60 & 60 & 60 & 60 & 3 & 60 & 60 & 60 & 60 & 60 & 60 & & & & & & & & \\
\hline Sv022 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & & & & & & & & \\
\hline Sv023 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & & & & & & & & \\
\hline Sv024 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & & & & & & & & \\
\hline Sv025 & xx20 & x 21 & xx2A & xx22 & xx23 & x 24 & xx27 & xx28 & xx30 & x 31 & xx3A & x 32 & x 33 & xx34 & & & & & & & & \\
\hline Sv026 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & & & & & & & & \\
\hline Sv027 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & & & & & & & & \\
\hline Sv028 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv029 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline sv030 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv031 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv032 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv033 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & & & & & & & & \\
\hline Sv034 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & & & & & & & & \\
\hline Sv035 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & & & & & & & & \\
\hline Sv036 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & & & & & & & & \\
\hline Sv037 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline sv038 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv039 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline sv040 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv041 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv042 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline sv043 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv044 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv045 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv046 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline sv047 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & & & & & & & & \\
\hline Sv048 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline sv049 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & & & & & & & & \\
\hline sv050 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv051 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv052 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv053 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv054 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv055 & 0 & 0 & 0 & 0 & 0 & 0 & O & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv056 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv057 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv058 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline sv059 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline sv060 & 0 & 0 & 0 & 0 & 0 & 0 & 9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv061 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv062 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline sv063 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline Sv064 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & & & & & & \\
\hline
\end{tabular}

\subsection*{5.6.2 High-gain Parameters (High-gain Drive unit)}

There are a total of 65 servo parameters. The parameters can be changed on any screen.
(Note) In the following explanations on bits, set all bits not used, including blank bits, to " 0 ".
Setting and display method of servo parameters vary with the CNC to be used. Refer to the instruction manuals for each CNC
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Abbr.} & \multirow[b]{2}{*}{Details} & \multirow[b]{2}{*}{Type} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline B-Vx \\
compatible
\end{tabular}} & \multirow[t]{2}{*}{Change method} & \multirow[b]{2}{*}{Setting unit} & \multirow[b]{2}{*}{Min.} & \multirow[b]{2}{*}{Max.} & \multicolumn{3}{|c|}{Type} \\
\hline & & & & & & & & & Machine & Servo & Adjust \\
\hline sv001 & PC1 & Motor gear ratio & Spec & \(\bigcirc\) & Initial & & 1 & * & \(\bigcirc\) & & \\
\hline sv002 & PC2 & Machine gear ratio & Spec & \(\bigcirc\) & Initial & & 1 & * & \(\bigcirc\) & & \\
\hline sv003 & PGN1 & Position loop gain 1 & Spec & \(\bigcirc\) & Normal & rad/s & 1 & 200 & & & \(\bigcirc\) \\
\hline sv004 & PGN2 & Position loop gain 2 & Adjust & \(\bigcirc\) & Normal & \(\mathrm{rad} / \mathrm{s}\) & 0 & 999 & & \(\bigcirc\) & \\
\hline sv005 & VGN1 & Speed loop gain 1 & Adjust & \(\bigcirc\) & Normal & & 1 & 999 & & & \(\bigcirc\) \\
\hline sv006 & VGN2 & Speed loop gain 2 & & \(\bigcirc\) & Normal & & -1000 & 1000 & & & \(\bigcirc\) \\
\hline sv007 & VIL & Speed loop delay compensation & Adjust & \(\bigcirc\) & Normal & & 0 & * & & & \(\bigcirc\) \\
\hline sv008 & VIA & Speed loop advance compensation & Adjust & \(\bigcirc\) & Normal & & 1 & 9999 & & & \(\bigcirc\) \\
\hline sv009 & IQA & Current loop q-axis advance compensation & & \(\bigcirc\) & Normal & & 1 & 20480 & & \(\bigcirc\) & \\
\hline sv010 & IDA & Current loop d-axis advance compensation & & 0 & Normal & & 1 & 20480 & & \(\bigcirc\) & \\
\hline sv011 & IQG & Current loop q-axis gain & & \(\bigcirc\) & Normal & & 1 & 4096 & & \(\bigcirc\) & \\
\hline sv012 & IDG & Current loop d-axis gain & & \(\bigcirc\) & Normal & & 1 & 4096 & & \(\bigcirc\) & \\
\hline sv013 & ILMT & Current limit value & & \(\bigcirc\) & Normal & stall rated current \% & 0 & 999 & & & \(\bigcirc\) \\
\hline sv014 & ILMTsp & \begin{tabular}{l}
\begin{tabular}{l}
Current limit value \\
(special operation)
\end{tabular} \\
\hline
\end{tabular} & & 0 & Normal & stall rated current \% & 0 & 999 & & & \(\bigcirc\) \\
\hline sv015 & FFC & Acceleration feed forward gain & Adjust & \(\bigcirc\) & Normal & \% & 0 & 999 & & \(\bigcirc\) & \\
\hline sv016 & LMC1 & Lost motion compensation 1 & Adjust & 0 & Normal & stall rated current \% & -1 & 200 & & & \(\bigcirc\) \\
\hline sv017 & SPEC & Servo specifications & Spec & \(\wedge\) & Initial & HEX setting & * & * & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) \\
\hline sv018 & PIT & Ball screw pitch & Spec & \(\bigcirc\) & Initial & mm & 1 & * & \(\bigcirc\) & & \\
\hline sv019 & RNG1 & Position detector resolution & Spec & \(\bigcirc\) & Initial & kp/rev,kp/PIT & 1 & 9999 & & \(\bigcirc\) & \\
\hline sv020 & RNG2 & Speed detector resolution & Spec & \(\bigcirc\) & Initial & kp/rev & 1 & 9999 & & \(\bigcirc\) & \\
\hline sv021 & OLT & Overload time constant & & \(\bigcirc\) & Normal & s & 1 & 999 & & \(\bigcirc\) & \\
\hline sv022 & OLL & Overload detection level & & 0 & Normal & stall rated current \% & 10 & 500 & & \(\bigcirc\) & \\
\hline sv023 & OD1 & Excessive detection error width (at SV ON) & & 0 & Normal & mm & 0 & * & \(\bigcirc\) & & \\
\hline sv024 & INP & In-position width & & \(\bigcirc\) & Normal & \(\mu \mathrm{m}\) & 0 & * & \(\bigcirc\) & & \\
\hline sv025 & MTYP & Motor/detector type & Spec & \(\wedge\) & Initial & HEX setting & * & * & & \(\bigcirc\) & \\
\hline sv026 & OD2 & Excessive detection error width (at SV OFF) & & 0 & Normal & mm & 0 & * & \(\bigcirc\) & & \\
\hline sv027 & SSF1 & Special servo function 1 & Spec & \(\wedge\) & Normal & HEX setting & * & * & & \(\bigcirc\) & \(\bigcirc\) \\
\hline sv028 & & & & & & & & & & & \\
\hline sv029 & VCS & Speed loop gain change starting speed & & 0 & Normal & r/min & 0 & 9999 & & & \(\bigcirc\) \\
\hline sv030 & IVC & Voltage/current compensation & & 0 & Normal & & * & * & & & \(\bigcirc\) \\
\hline sv031 & OVS1 & Overshoot compensation 1 & Adjust & \(\bigcirc\) & Normal & \% & -1 & 100 & & & \(\bigcirc\) \\
\hline sv032 & TOF & Torque offset & Adjust & 0 & Normal & stall rated current \% & -100 & 100 & & & \(\bigcirc\) \\
\hline sv033 & SSF2 & Special servo function 2 & Spec & \(\wedge\) & Normal & HEX setting & * & * & & \(\bigcirc\) & \(\bigcirc\) \\
\hline sv034 & SSF3 & Special servo function 3 & & \(\wedge\) & Normal & HEX setting & * & * & & \(\bigcirc\) & \(\bigcirc\) \\
\hline sv035 & SSF4 & Special servo function 4 & & \(\bigcirc\) & Normal & HEX setting & * & * & & \(\bigcirc\) & \(\bigcirc\) \\
\hline sv036 & PTYP & Power supply type & Spec & \(\bigcirc\) & Initial & HEX setting & * & * & & \(\bigcirc\) & \\
\hline sv037 & JL & Load inertia ratio (Jm+JI/Jm) & Adjust & \(\bigcirc\) & Normal & \% & 0 & 5000 & & & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Name} & \multirow[b]{2}{*}{Abbr.} & \multirow[b]{2}{*}{Details} & \multirow[b]{2}{*}{Type} & \multirow[t]{2}{*}{\begin{tabular}{|c}
B-Vx \\
compatibl \\
e
\end{tabular}} & \multirow[t]{2}{*}{Change method} & \multirow[b]{2}{*}{Setting unit} & \multirow[b]{2}{*}{Min.} & \multirow[b]{2}{*}{Max.} & \multicolumn{3}{|c|}{Type} \\
\hline & & & & & & & & & Machine & Servo & Adjust \\
\hline sv038 & FHz1 & Frequency 1 of machine resonance suppression filter & Adjust & \(\wedge\) & Normal & Hz & 0 & 9000 & \(\bigcirc\) & & \\
\hline sv039 & LMCD & Lost motion compensation timing & & 0 & Normal & ms & 0 & 2000 & & & 0 \\
\hline sv040 & LMCT & Current bias/lost motion compensation dead zone & Adjust & 0 & Normal & -/ \(/ \mathrm{m}\) & * & * & & & \(\bigcirc\) \\
\hline sv041 & LMC2 & Lost motion compensation 2 & Adjust & 0 & Normal & stall rated current \% & -1 & 200 & & & \(\bigcirc\) \\
\hline sv042 & OVS2 & Overshoot compensation 2 & & 0 & Normal & stall rated current \% & -1 & 100 & & & 0 \\
\hline sv043 & OBS1 & Observer 1 & & \(\bigcirc\) & Normal & rad & 0 & 1000 & & & \(\bigcirc\) \\
\hline sv044 & OBS2 & Observer 2 & & \(\bigcirc\) & Normal & \% & 0 & 500 & & & \(\bigcirc\) \\
\hline sv045 & TRUB & Friction torque/Current bias & & 0 & Normal & _/stall rated current \% & * & * & & & 0 \\
\hline sv046 & FHz2 & Frequency 2 of machine resonance suppression filter & & 6) & Normal & Hz & 0 & 9000 & \(\bigcirc\) & & \\
\hline sv047 & EC1 & Inductive voltage compensation & & 0 & Normal & \% & * & * & & & \(\bigcirc\) \\
\hline sv048 & EMGrt & Drop prevention brake operation delay time & & 0 & Normal & ms & 0 & 20000 & 0 & & \\
\hline sv049 & PGN1sp & Position loop gain 1 (special operation) & & 0 & Normal & rad/s & 1 & 200 & & & \(\bigcirc\) \\
\hline sv050 & PGN2sp & Position loop gain 2 (special operation) & & 0 & Normal & rad/s & 0 & 999 & & \(\bigcirc\) & \\
\hline sv051 & DFBT & Dual feedback control time constant & & \(\bigcirc\) & Normal & ms & 0 & 9999 & & & \(\bigcirc\) \\
\hline sv052 & DFBN & Dual feedback control dead zone width & & 0 & Normal & \(\mu \mathrm{m}\) & 0 & 9999 & & & \(\bigcirc\) \\
\hline sv053 & OD3 & Excessive error width (special operation) & & 0 & Normal & mm & 0 & * & 0 & & \\
\hline sv054 & ORE & Closed loop overrun detection width & & 0 & Normal & mm & -1 & * & \(\bigcirc\) & & \\
\hline sv055 & EMGx & Emergency stop maximum delay time & & 0 & Normal & ms & 0 & 20000 & \(\bigcirc\) & & \\
\hline sv056 & EMGt & Emergency stop deceleration time constant & & \(\bigcirc\) & Normal & ms & -20000 & 20000 & \(\bigcirc\) & & \\
\hline sv057 & SHGC & SHG control gain & & \(\bigcirc\) & Normal & rad/s & 0 & 1200 & & 0 & \\
\hline sv058 & SHGCsp & SHG control gain (special operation) & & \(\bigcirc\) & Normal & rad/s & 0 & 1200 & & \(\bigcirc\) & \\
\hline sv059 & TCNV & Torque estimated gain & & \(\bigcirc\) & Normal & & * & * & & & \(\bigcirc\) \\
\hline sv060 & TLMT & G0 collision detection level & & \(\bigcirc\) & Normal & stall rated current \% & 0 & 999 & & & \(\bigcirc\) \\
\hline sv061 & DA1NO & D/A output channel-1 data No. & & \(\wedge\) & Normal & & * & * & & & \(\bigcirc\) \\
\hline sv062 & DA2NO & D/A output channel-2 data No. & & \(\wedge\) & Normal & & * & * & & & \(\bigcirc\) \\
\hline sv063 & DA1MPY & D/A output channel-1 magnification & & \(\wedge\) & Normal & & * & * & & & \(\bigcirc\) \\
\hline sv064 & DA2MPY & D/A output channel-2 magnification & & \(\bigcirc\) & Normal & & * & * & & & \(\bigcirc\) \\
\hline sv065 & TLC & Machine end compensation spring constant & & 6) & Normal & & * & * & \(\bigcirc\) & & \(\bigcirc\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Type & Spec : Set in servo spec screen. & Adjust : Set in servo adjust screen. \\
\hline MDS-B-Vx compatible & \begin{tabular}{ll}
O: Same as MDS-B-Vx. \\
changed. & : Same setting as MDS-B-Vx even if the contents has \\
& : New parameters of MDS-C 1-Vx.
\end{tabular} & \begin{tabular}{ll}
\(\wedge\) & : Includes new parameters of MDS-B-Vx. 4 \\
(5) & New parameters of MDS-B-Vx. 4
\end{tabular} \\
\hline Change method & Initial: Valid when NC power is turned ON. & Normal: Valid whenever setting. \\
\hline
\end{tabular}
(1) Parameters
\begin{tabular}{|l|}
\hline In the following explanations on bits, set all bits not used, including blank bits, to "0". \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Abbr. & Details & Setting range (unit) \\
\hline SV001 & PC1 & \begin{tabular}{l}
Set the motor side gear ratio. \\
Set so that PC1 and PC2 have the smallest integer ratio. \\
(Refer to "(2) Limitations to electronic gear setting value".)
\end{tabular} & 1 to 32767 \\
\hline SV002 & PC2 & \begin{tabular}{l}
Set the machine side gear ratio. \\
Set so that PC1 and PC2 have the smallest integer ratio. \\
(Refer to "(2) Limitations to electronic gear setting value".)
\end{tabular} & 1 to 32767 \\
\hline SV003 & PGN1 & Set the position loop gain in increments of "1". Set "33" for ordinary operation. & 1 to 200 (rad/s) \\
\hline SV004 & PGN2 & In case of SHG control, set this parameter with SV057 (SHGC). Set " 0 " when it is not used. & 0 to 999 (rad/s) \\
\hline SV005 & VGN1 & \begin{tabular}{l}
Set the speed loop gain. \\
The standard value is 150 . \\
When it is increased, response is improved but vibration and sound become larger.
\end{tabular} & 1 to 999 \\
\hline SV006 & VGN2 & \begin{tabular}{l}
If it is desired to reduce noise generated at high-speed rotation for rapid traverse, set a speed loop gain (smaller than VGN1) to be gain at high-speed rotation (1.2 times higher than the rated rotating speed). Set the start speed of speed gain decrease to the parameter SV029(VCS). \\
Set "0" when this parameter function is not used.
\end{tabular} & -1000 to 1000 \\
\hline SV007 & VIL & \begin{tabular}{l}
Set this parameter when the limit cycle occurs in a closed loop, or the overshoot occurs during positioning. \\
Set "0" when this parameter function is not used. \\
Related parameter is SV027 SSF1 (vcnt1,vcnt2).
\end{tabular} & 0 to 32767 \\
\hline SV008 & VIA & Set the speed loop integral gain. & \[
\begin{array}{|l|}
\hline 1 \text { to } 9999 \\
(0.0687 \mathrm{rad} / \mathrm{s}) \\
\hline
\end{array}
\] \\
\hline SV009 & IQA & \begin{tabular}{l}
Set the current control gain. \\
The data to be set is predetermined for each motor employed. Refer to section "(10) Standard Parameters for Each Motor".
\end{tabular} & 1 to 20480 \\
\hline SV010 & IDA & Set the current control gain. The data to be set is predetermined for each motor employed. Refer to section "(10) Standard Parameters for Each Motor". & 1 to 20480 \\
\hline SV011 & IQG & \begin{tabular}{l}
Set the current control gain. \\
The data to be set is predetermined for each motor employed. Refer to section "(10) Standard Parameters for Each Motor".
\end{tabular} & 1 to 4096 \\
\hline SV012 & IDG & \begin{tabular}{l}
Set the current control gain. \\
The data to be set is predetermined for each motor employed. Refer to section "(10) Standard Parameters for Each Motor".
\end{tabular} & 1 to 4096 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Name & Abbr. & \multicolumn{1}{|c|}{ Details } & Setting range (unit) \\
\hline SV013 & ILMT & \begin{tabular}{l}
Set the rate (\%) in respect to the stall rated current. \\
For making the maximum driver torque level available, assign "500". \\
(This is the limit value for both + and - directions.)
\end{tabular} & \begin{tabular}{l}
0 to 999 \\
(Stall rated current \%)
\end{tabular} \\
\hline SV014 & ILMTsp & \begin{tabular}{l}
Set the rate (\%) in respect to the stall rated current for special \\
operations (absolute position initialization, stopper operation, etc). \\
For making the maximum driver torque level available, assign "500". \\
(This is the limit value for both the + and - direction.)
\end{tabular} & \begin{tabular}{l}
0 to 999 \\
(Stall rated current \%)
\end{tabular} \\
\hline SV015 & FFC & \begin{tabular}{l}
Set this parameter when an amount of overshoot caused in feed \\
forward control or a relative error caused in synchronous control is too \\
large. \\
Set "0" when this parameter is not used.
\end{tabular} & 0 to 999 (\%) \\
\hline SV016 & LMC1 & \begin{tabular}{l}
Set this parameter if the protrusion is large when the arc quadrant is \\
changed. \\
(Caused by non-sensitive band from friction, torsion, backlash, etc.) \\
This is valid only when lost motion compensation SV027 (Imc1, Imc2) \\
is selected.
\end{tabular} & -1 to 200 \\
\hline & \begin{tabular}{l}
Type 1 SV027 (SSF1) Imc1=1, Imc2=0 \\
In low-speed interpolation m ode, compensation of this type eliminates \\
bump. \\
Setting "0" to this parameter indicates interpolation gain 0. \\
Setting "100" indicates 100\% compensation.
\end{tabular} & 0 to 200 (\%) \\
\hline \begin{tabular}{ll}
Type 2 SV027 (SSF1) Imc1=0, Imc2=1 \\
This is the standard type of MDS series. \\
Use type 2 when type 1 is not enough for compensation such as in \\
high-speed, high-accuracy interpolation. \\
Set data in percentage to stall rated current.
\end{tabular} & \begin{tabular}{l}
(Stall rated current \%)
\end{tabular} \\
\hline \begin{tabular}{l}
To change the compensation gain (type 1) or compensation amount \\
(type 2) according to the direction. \\
To set a different value according to the command direction, set this \\
in addition to SV041 (LMC2). \\
Set the value for changing the command speed from the - to + \\
direction (during command direction CW) in SV016 (LMC1). \\
Set the value for changing the command speed from the + to - \\
direction (during command direction CW) in SV041 (LMC2). \\
When "-1" is set, compensation will not be carried out when the \\
command speed direction changes.
\end{tabular} & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Name & Abbr. & \multicolumn{6}{|c|}{Details} & Setting range (unit) \\
\hline \multirow[t]{20}{*}{SV017} & \multirow[t]{20}{*}{SPEC} & \multicolumn{6}{|l|}{Set the servo system specifications in bit units.} & \multirow[t]{6}{*}{HEX setting} \\
\hline & & F E & D & C & B & A 9 & & \\
\hline & & & & & drvall & drvup mpt3 & mp & \\
\hline & & \(7 \quad 6\) & 5 & 4 & 3 & \(2 \quad 1\) & 0 & \\
\hline & & abs \(\mathrm{vmh}^{7}\) & vdir & & & seqh dfbx & fdir2 & \\
\hline & & \multicolumn{6}{|l|}{(Note) Always set to a "0" in a blank bit.} & \\
\hline & & \begin{tabular}{|c|c}
bit & Name
\end{tabular} & \multicolumn{4}{|l|}{Meaning when set to 0} & Meaning when set to 1 & \\
\hline & & 0 \({ }^{\text {fdir2 }}\) S & \multicolumn{4}{|l|}{Speed feedback forward polarity} & Speed feedback reverse polarity & larity \\
\hline & & dfbx D & \multicolumn{4}{|l|}{Dual feedback control invalid} & Dual feedback control valid & \\
\hline & & \(2{ }^{2}\) seqh \(\begin{aligned} & \text { R } \\ & \text { m }\end{aligned}\) & \multicolumn{4}{|l|}{Ready/servo ON time normal mode} & Ready/servo ON time reduced mode & \\
\hline & & \begin{tabular}{l|l|l|l}
& & vfb & S \\
\hline
\end{tabular} & \multicolumn{4}{|l|}{Speed feedback filter invalid} & Speed feedback filter valid & \\
\hline & & 4 & \multicolumn{4}{|l|}{Position feedback forward polarity} & Position feedback reverse polarity & \\
\hline & & \begin{tabular}{l|l|l|l|}
5 & vdir & \(\begin{array}{l}\text { M } \\
\text { d }\end{array}\) \\
\hline
\end{tabular} & \multicolumn{4}{|l|}{Motor detector installation direction AC} & Motor end detector installation direction BD & \\
\hline & & \(6 \mathrm{~V}^{\mathrm{vanh}}\) N & \multicolumn{4}{|l|}{Normal performance mode} & High-speed performance mode & \\
\hline & & \(7{ }^{7}\) abs \({ }^{\text {R }}\) & \multicolumn{4}{|l|}{Relative position detection} & Absolute position detection & \\
\hline & & 8 mp M & \multicolumn{4}{|l|}{MP scale 360P (2mm pitch)} & MP scale 720P (1mm pitch) & \\
\hline & & \begin{tabular}{l}
9 \\
\hline mpt3
\end{tabular} \(\begin{aligned} & \text { M } \\
& \text { d }\end{aligned}\) & \multicolumn{4}{|l|}{MP scale absolute position detection type \(1 / 2\) selection} & MP scale absolute position detection type 3 selection & \\
\hline & & A & \multicolumn{4}{|l|}{Uses with the motor standard driver.} & Uses with the driver which capacity is 1 rank upper/lower than the standard driver. & \\
\hline & & B \({ }^{\text {drvall }}\) N & \multicolumn{4}{|l|}{Normal setting.} & Uses the motor standard driver and the driver of the other capacity together. & \\
\hline & & & \begin{tabular}{l}
Special \\
Standar \\
Special \\
Refer to
\end{tabular} & \begin{tabular}{l}
motor \\
d rotary rotary \\
"(4) M
\end{tabular} & \begin{tabular}{l}
selectio \\
y moto \\
motor \\
Motor ty
\end{tabular} & \[
\begin{aligned}
& \text { on. } \\
& \text { r: } 0 \\
& : 1 \text { (For V2-0 }
\end{aligned}
\]
pe". & 0707s Amp) & \\
\hline SV018 & PIT & \multicolumn{6}{|l|}{\begin{tabular}{l}
Set the ball screw pitch. \\
Set "360" for a rotation axis. \\
Refer to section "(2) Limitations to electronic gear setting value".
\end{tabular}} & 1 to 32767 (mm) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Abbr. & Details & Setting range (unit) \\
\hline \multirow[t]{3}{*}{SV019} & \multirow[t]{3}{*}{RNG1} & Set the number of pulses (k pulse) per rotation of the detector used for position control. & 1 to 9999 \\
\hline & & \begin{tabular}{l}
<Semi-closed loop> \\
Set the number of pulses per rotation of the motor. Set the same value to SV020 (RNG2).
\end{tabular} & (kp/rev) \\
\hline & & \begin{tabular}{l}
<Closed loop> \\
Set the number of pulses per ball screw pitch. \\
When using a linear scale, set the value obtained from the following calculation expression:
\[
\text { Setting value }=\frac{\text { Ball screw pitch }(\mathrm{mm})}{\text { Linear scale resolution }(\mathrm{mm})} \times 10^{-3}
\]
\end{tabular} & (kp/rev) \\
\hline SV020 & RNG2 & Set the number of pulses (k pulse) per rotation of the motor end detector. & 1 to 9999 (kp/rev) \\
\hline SV021 & OLT & \begin{tabular}{l}
Set the time constant for detection of overload 1 (OL1) \\
Normally, "60" is set. When using a 15 kW driver (HA-A15KL), the upper limit value is 3 (s).
\end{tabular} & 1 to 999 (s) \\
\hline SV022 & OLL & \begin{tabular}{l}
Set the current detection level of overload 1 (OL1) with respect to the stall rated current (\%). \\
Set "150" for ordinary operation.
\end{tabular} & \[
\begin{aligned}
& 110 \text { to } 500 \\
& \text { (Stall rated current \%) }
\end{aligned}
\] \\
\hline SV023 & OD1 & \begin{tabular}{l}
Set the excessive detection error width at the time of servo ON. <Setting equation>
\[
\begin{aligned}
& \text { Setting equation> } \\
& \text { OD1 }=\text { OD2 }=\text { OD3 }=\frac{F}{60 \times \mathrm{PGN} 1 \times 0.5}(\mathrm{~mm})
\end{aligned}
\] \\
F : Max. rapid traverse rate (\(\mathrm{mm} / \mathrm{min}\)) \\
PGN1: Position loop gain 1 (rad/s) \\
When " 0 " is set, the excessive error at servo ON will not be detected.
\end{tabular} & 0 to 32767 (mm) \\
\hline SV024 & INP & Set the in-position detection width value. Set " 50 " for ordinary operation. & 0 to 32767 (\(\mu \mathrm{m}\)) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Name & Abbr. & Details & Setting range (unit) \\
\hline SV040 & LMCT & \begin{tabular}{l}
-Set the lost motion compensation dead zone. \\
Set in the low-order 8 bits. \\
Normally set " 0 ". \\
Set only when the lost motion compensation timing is not proper during feed forward control. \\
■Current bias: Set in the high-order 8 bits. (Icy) \\
This is used in combination with SV030 and SV045 high-order 8 bits.
\end{tabular} & \begin{tabular}{l}
-32768 to 32767 \\
(Note) The setting range of the low-order 8 bits is 0 to \(100(\mu \mathrm{~m})\).
\end{tabular} \\
\hline SV041 & LMC2 & \begin{tabular}{l}
Normally set this to "0". \\
Set this with SV016 (LMC1) when setting the lost motion compensation's gain (type 1) or compensation amount (type 2) to different values according to the command direction. \\
- Set the value for changing the command speed from the - to + direction (during command direction CW) in SV016 (LMC1). \\
- Set the value for changing the command speed from the + to direction (during command direction CW) in SV041 (LMC2). \\
- When " -1 " is set, compensation will not be carried out when the command speed direction changes. \\
This is valid only when lost motion compensation (SV027: Imc1, Imc2) is selected.
\end{tabular} & \[
\begin{array}{|l|}
\hline-1 \text { to } 200 \\
\text { (Stall rated current \%) }
\end{array}
\] \\
\hline SV042 & OVS2 & \begin{tabular}{l}
Overshoot compensation 2 \\
Set the overshoot compensation amount for unidirectional movement (command direction CW). \\
When " 0 " is set, the value set for SV031 (OVS1) will be set. \\
When " -1 " is set, compensation will not be carried out during unidirectional movement. \\
This is valid only when overshoot compensation SV027 (SSF1/ovs1) is selected.
\end{tabular} & \[
\begin{array}{|l}
-1 \text { to } 100 \\
\text { (Stall rated current \%) }
\end{array}
\] \\
\hline SV043 & OBS1 & \begin{tabular}{l}
Observer1 \\
Set the pole of the observer. Normally set approximately "628" (rad). To operate the observer function, also set the SV037 (JL) and SV044 (OBS2). \\
Set to "0" when not used.
\end{tabular} & 0 to 1000 (rad) \\
\hline SV044 & OBS2 & \begin{tabular}{l}
Observer2 \\
Set the execution gain of the observer. Normally set to "100". To operate the observer function, also set the SV037 (JL) and SV043 (OBS1). \\
Set to " 0 " when not used.
\end{tabular} & 0 to 500 (\%) \\
\hline SV045 & TRUB & \begin{tabular}{l}
\(\square\) When using the collision detection function, set the friction torque in the low-order 8 bits with a rate (\%) for the stall rated current. Set to " 0 " when not using the collision detection function. \\
-Current bias : Set in the high-order 8 bits (lb1). This is used in combination with SV030 and SV040 high-order 8 bits.
\end{tabular} & \begin{tabular}{l}
-32768 to 32767 \\
(Note) The setting range of the low-order 8 bits is 0 to 100 (Stall rated current \%).
\end{tabular} \\
\hline SV046 & FHz2 & \begin{tabular}{l}
If machine vibration occurs, set the vibration frequency to be suppressed. \\
Note that the value 36 Hz or more should be set. Set "0" when not using this function. \\
Specially, set sw33 (SSF2/nfd2) together when setting the low frequency 100 Hz or less.
\end{tabular} & 0 to \(9000(\mathrm{~Hz})\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Abbr. & Details & Setting range (unit) \\
\hline SV047 & EC1 & \begin{tabular}{l}
Inductive voltage compensation \\
Set the execution gain of the inductive voltage compensation. Normally, set to "100".
\end{tabular} & -32768 to 32767 (\%) \\
\hline SV048 & EMGrt & \begin{tabular}{l}
Set the brake operation delay time when using the drop prevention function. \\
Set a larger value than the actual brake operation time. Set a "0" when not using the drop prevention function. SV055 (EMGx) and SV056 (EMGt) must also be set when this function is used.
\end{tabular} & 0 to 20000 (ms) \\
\hline SV049 & PGN1sp & \begin{tabular}{l}
Set the position loop gain for special operations (synchronous tap, interpolation with spindle C axis, etc.). \\
Normally, set the spindle position loop gain.
\end{tabular} & 1 to 200 (rad/s) \\
\hline SV050 & PGN2sp & \begin{tabular}{l}
Set this with SV058 (SHGCsp) when carrying out SHG control during special operations (synchronous tap, interpolation with spindle \(C\) axis, etc.). \\
When this parameter is not used, set " 0 ".
\end{tabular} & 0 to 999 (rad/s) \\
\hline SV051 & DFBT & Set the compensation time constant for dual feedback control. & 0 to 9999 (ms) \\
\hline SV052 & DFBN & Set the dead zone amount for dual feedback control. & 0 to 9999 (\(\mu \mathrm{m}\)) \\
\hline SV053 & OD3 & \begin{tabular}{l}
Set the excessive error detection width at servo ON for special operations (absolute position initialization setting, stopper operation, etc.). \\
When " 0 " is set, the excessive error will not be detected during special operations and servo ON.
\end{tabular} & 0 to 32767 (mm) \\
\hline SV054 & ORE & \begin{tabular}{l}
Set the overrun detection width for the closed loop. \\
For setting synchronous control slave axis, set the overrun detection width for master/slave axis. \\
When " -1 " is set, the overrun will not be detected. When " 0 " is set, the overrun will be detected with a \(2(\mathrm{~mm})\) width.
\end{tabular} & -1 to 32767 (mm) \\
\hline SV055 & EMGx & \begin{tabular}{l}
Set the emergency stop maximum delay time when using the drop prevention function. \\
Normally, set it to the same value as the SV056 (EMGt). \\
Set to "0" when not using the drop prevention function.
\end{tabular} & 0 to 20000 (ms) \\
\hline SV056 & EMGt & \begin{tabular}{l}
Set the deceleration time constant from the maximum rapid traverse speed when using the drop prevention function. \\
Normally, the same value as the normal CNC G0 acceleration/deceleration time constant is set. Set " 0 " when not using the drop prevention function.
\end{tabular} & -20000 to 20000 (ms) \\
\hline SV057 & SHGC & Set this with SV004 (PGN2) when carrying out SGH control. Set 0 when not using this function. & 0 to 1200 (rad/s) \\
\hline SV058 & SHGCsp & \begin{tabular}{l}
Set this with SV050 (PGN2sp) when carrying out SHG control during special operations (synchronous tap, interpolation with spindle C axis, etc.). \\
Set 0 when not using this function.
\end{tabular} & 0 to 1200 (rad/s) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Name & Abbr. & Details & Setting range (unit) \\
\hline SV059 & TCNV & \begin{tabular}{l}
When using the collision detection function, set the estimated torque gain. \\
When "1" is set in SV035: SSF4/clt, the setting value guideline can be displayed in MPOF on the Servo monitor screen. \\
Set to " 0 " when not using the collision detection function.
\end{tabular} & -32767 to 32767 \\
\hline SV060 & TLMT & When using the collision detection function, set the collision detection level for the method \(1 \cdot \mathrm{GO}\) modal with a rate for the stall rated current. Set to " 0 " when not using the collision detection function. & \begin{tabular}{l}
0 to 999 \\
(Stall rated current \%)
\end{tabular} \\
\hline SV061 & DA1NO & Set the output data number for channel 1 of the D/A output function. When " -1 " is set, the D/A output of that axis will not be carried out. & -32767 to 32767 \\
\hline SV062 & DA2NO & Set the output data number for channel 2 of the D/A output function. When " -1 " is set, the D/A output of that axis will not be carried out. & -32767 to 32767 \\
\hline SV063 & DA1MPY & Set the output magnification for channel 1 of the D/A output function. The output magnification will be the setting value/256. If " 0 " is set, the output magnification will be 1 -fold, in the same manner as when " 256 " is set. & -32768 to 32767 \\
\hline SV064 & DA2MPY & Set the output magnification for channel 2 of the D/A output function. The output magnification will be the setting value/256. If " 0 " is set, the output magnification will be 1 -fold, in the same manner as when " 256 " is set. & -32768 to 32767 \\
\hline SV065 & TLC & \begin{tabular}{l}
Set the spring constant of the machine end compensation. \\
When the semi-closed system is applied, the machine end compensation amount is calculated with the following equation.
\[
\text { Compensation amount }(\mu \mathrm{m})=\frac{\mathrm{F} \times \mathrm{SV} 065}{\mathrm{R} \times 10^{9}}
\] \\
F: Commanded speed (\(\mathrm{mm} / \mathrm{min})^{2}\) \\
R: Radius (mm) \\
Set to "0" when not used.
\end{tabular} & -32768 to 32767 \\
\hline
\end{tabular}

\section*{(2) Limitations to electronic gear setting value}

Refer to Page 104.

\section*{(3) Command polarity}

When the motor is to rotate in the clockwise direction (looking from the load side) at the command for the + direction, the command direction is CW. Conversely, when the motor is to rotate in the counterclockwise direction, the command direction is CCW.
This rotation direction can be set with the CNC machine parameters. Note that the meaning of the \(\pm\) will differ for some servo parameters according to this motor rotation direction. The servo parameters affected by CW/CCW are shown below.
\begin{tabular}{ll}
SV016 (LMC1), SV041 (LMC2) & (When different values are set for SV016 and SV041) \\
SV031 (OVS1), SV042 (OVS2) & (When different values are set for SV031 and SV042)
\end{tabular}
<Example> If the lost motion compensation amount is to be changed according to the direction, the compensation amount at the quadrant changeover point of each arc where the lost motion compensation is applied will be as shown below according to the command polarity.

(4) Motor type

Set "mtyp" of SV025 (MTYP) combined with "spm" of SV017 (SPEC).
(a) Standard rotary motor (SV017(SPEC)=0xxx).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\left\lvert\, \begin{gathered}
\text { Moto } \\
\text { r } \\
\text { series }
\end{gathered}\right.
\] & 2000r/min standard & & \begin{tabular}{l}
2000r/min \\
low inertia
\end{tabular} & \(3000 \mathrm{r} / \mathrm{min}\)
low
inertia & & & & & 3000r/min standard & & & \begin{tabular}{c|}
\hline HC \\
\(2000 \mathrm{r} / \mathrm{min}\)
\end{tabular} medium inertia & HC
\(3000 \mathrm{r} / \mathrm{min}\) medium inertia & & \begin{tabular}{|c|}
\hline HC \\
\(3000 \mathrm{r} / \mathrm{min}\)
\end{tabular} ultra-low inertia & \\
\hline No. & 0 x & 1x & 2x & 3x & 4 x & 5x & 6x & 7 x & 8x & 9x & Ax & Bx & Cx & Dx & Ex & Fx \\
\hline x0 & HA4ON & & HA50L & HA53L & & & & & HA43N & & & HC52 & HC53 & & & \\
\hline x1 & HA80N & & HA100L & HA103L & & & & & HA83N & & & HC102 & HC103 & & HC103R & \\
\hline x2 & HA100N & & HA200L & HA203L & & & & & HA103N & & & HC152 & HC153 & & HC153R & \\
\hline x3 & HA200N & & HA300L & HA303L & & & & & HA203N & & & HC202 & HC203 & & HC203R & \\
\hline x4 & HA300N & & HA500L & HA503L & & & & & HA303N & & & HC352 & HC353 & & HC353R & \\
\hline x5 & HA700N & & & & & & & & HA703N & & & HC452 & HC453 & & HC503R & \\
\hline x6 & HA900N & & & & & & & & & & & HC702 & HC703 & & & \\
\hline x7 & & & HA-A11KL & & & & & & & & & HC902 & & & & \\
\hline x8 & & & HA-A15KL & & & & & & & & & & & & & \\
\hline x9 & & & & & & & & & & & & & & & & \\
\hline xA & & & HA150L & HA153L & & & & & HA93N & & & & & & & \\
\hline xB & & & & & & & & & & & & & & & & \\
\hline xC & & & & & & & & & HA053 & & & & & & & \\
\hline xD & & & & & & & & & HA13 & & & & & & & \\
\hline xE & & & & & & & & & HA23N & & & & & & & \\
\hline xF & & & & & & & & & HA33N & & & & & & & \\
\hline
\end{tabular}
(b) Special rotary motor (SV017(SPEC)=1xxx).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & \begin{tabular}{l}
HC 2000 \\
r/min \\
S drive \\
unit
\end{tabular} & & & & & & \\
\hline No. & 0x & 1x & 2x & 3 x & 4 x & 5x & 6 x & 7 x & 8x & 9 x & Ax & Bx & Cx & Dx & Ex & Fx \\
\hline x0 & & & & & & & & & & & & & & & & \\
\hline x1 & & & & & & & & & & & & & & & & \\
\hline x2 & & & & & & & & & & & & & & & & \\
\hline x3 & & & & & & & & & & & & & & & & \\
\hline x4 & & & & & & & & & & & HC353 & & & & & \\
\hline x5 & & & & & & & & & & HC452 & HC453 & & & & & \\
\hline x6 & & & & & & & & & & HC702 & & & & & & \\
\hline x7 & & & & & & & & & & & & & & & & \\
\hline x8 & & & & & & & & & & & & & & & & \\
\hline x9 & & & & & & & & & & & & & & & & \\
\hline xA & & & & & & & & & & & & & & & & \\
\hline xB & & & & & & & & & & & & & & & & \\
\hline xC & & & & & & & & & & & & & & & & \\
\hline xD & & & & & & & & & & & & & & & & \\
\hline xE & & & & & & & & & & & & & & & & \\
\hline xF & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
(5) Detector type

Set "pen" / "ent" of SV025 (MTYP) from the following table.

\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ CAUTION } \\
\hline With MDS-C1 series, only the serial encoder is applied as the motor end detector. \\
Thus, OHE/OHA type detector cannot be used as the motor end detector. \\
\hline
\end{tabular}
(Note 1) ABS SCALE corresponds to the following absolute position detection scales.
\begin{tabular}{ll}
Mitutoyo Corporation & AT41 \\
FUTABA Corporation & FME type, FLE type
\end{tabular}
(Note 2) ABS SCALE corresponds to the following absolute position detection scale.
Mitutoyo Corporation
AT342
HEIDENHAIN
LC19/M
(Note 3) Only the high-speed serial detector can be used for the motor end detector.
(Note 4) With synchronized control, normal setting for the master axis, and synchronized control setting for the slave axis.
Set "pen" / "ent" of SV025 (MTYP) as follows.
[Synchronized about speed]
C2xx : When the master axis is applied to semi-closed loop system.
Dxxx : When the master axis is applied to closed loop system.
[Synchronized about current]
CCxx : When the master axis is applied to semi-closed loop system.
(6) Detection system and MTYPSet SV025 (MTYP) from the following table.
(a) Semi-closed loop
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Motor end detector} & \multicolumn{2}{|r|}{OSE104} & \multicolumn{2}{|l|}{OSA104} & \multicolumn{2}{|l|}{OSE105} & \multicolumn{2}{|l|}{OSA105} & \multicolumn{2}{|r|}{HA-FH} & \multicolumn{2}{|r|}{OBA13} & \multicolumn{2}{|r|}{OSA14} & \multicolumn{2}{|r|}{OBA17} \\
\hline & MTYP & Detect system \\
\hline & 00xx & INC & 11xx & ABS & 22xx & INC & 22xx & ABS & \(22 x x\) & ABS & \(22 x x\) & ABS & 22xx & ABS & 22xx & ABS \\
\hline
\end{tabular}
(b) Closed loop
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{OHE25K-ET} & \multicolumn{2}{|l|}{OHA25K-ET} & \multicolumn{2}{|l|}{OSE104-ET} & \multicolumn{2}{|l|}{OSA104-ET} & \multicolumn{2}{|l|}{OSE105-ET} & \multicolumn{2}{|l|}{OSA105-ET} & \multicolumn{2}{|r|}{SCALE} & \multicolumn{2}{|l|}{ABS SCALE low-speed serial} & \multicolumn{2}{|l|}{ABS SCALE high-speed serial} \\
\hline & MTYP & Detect system \\
\hline OSE104 & 40xx & INC & 50xx & ABS & 40 xx & INC & 50xx & ABS & 60xx & INC & 60xx & ABS & 80xx & INC & 90xx & ABS & A0xx & ABS \\
\hline OSA104 & 41xx & INC & 51xx & ABS & 41xx & INC & 51xx & ABS & 61xx & INC & 61xx & ABS & 81xx & MP ABS & 91xx & ABS & A1xx & ABS \\
\hline OSE105 & 42xx & INC & 52xx & ABS & 42xx & INC & 52xx & ABS & 62xx & INC & 62xx & ABS & 82xx & INC & 92xx & ABS & A2x & ABS \\
\hline OSA105 & 42xx & INC & 52xx & ABS & 42xx & INC & 52 & ABS & xx & NC & 62xx & ABS & 2xx & MP ABS & 92xx & ABS & A2xx & ABS \\
\hline HA-FH & 42xx & INC & 2xx & ABS & 42xx & INC & 2xx & ABS & 62xx & INC & 62xx & ABS & 82xx & MP ABS & 92xx & ABS & A2xx & ABS \\
\hline OBA13 & 42xx & INC & 52xx & ABS & 42xx & INC & 52xx & ABS & 62xx & INC & 62xx & ABS & 82xx & MP ABS & 92xx & ABS & A2xx & ABS \\
\hline OSA14 & 42 xx & INC & 52xx & ABS & 42xx & INC & 52xx & ABS & 62xx & INC & 62xx & ABS & 82xx & MP ABS & 92xx & ABS & A2xx & ABS \\
\hline OBA17 & 42xx & INC & 52xx & ABS & 42xx & INC & 52xx & ABS & 62xx & INC & 62xx & ABS & 82xx & MP ABS & 92xx & ABS & A2xx & ABS \\
\hline
\end{tabular}

\section*{(7) Power supply type}

Set "ptyp" of SV036 (PTYP) from the following table.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline No. & \[
\begin{gathered}
\hline 0 x k W \\
0 x
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { 1xkW } \\
1 \mathrm{x}
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { 2xkW } \\
2 x
\end{gathered}
\] & \[
\begin{gathered}
\hline 3 x k W \\
3 x
\end{gathered}
\] & \[
\begin{gathered}
4 \times k W \\
4 x
\end{gathered}
\] & \[
\begin{gathered}
\hline 5 x \mathrm{xW} \\
5 \mathrm{x}
\end{gathered}
\] & 6 x & 7x & \[
\begin{gathered}
\hline 0 x k W \\
8 x
\end{gathered}
\] \\
\hline 0 & PS nonconnect & & & CV-300 & & & & & \\
\hline 1 & & CV-110 & & & & & & & CR-10 \\
\hline 2 & & & CV-220 & & & & & & CR-15 \\
\hline 3 & & & & & & & & & CR-22 \\
\hline 4 & CV-37 & & & & & & & & CR-37 \\
\hline 5 & & CV-150 & & & CV-450 & CV-550 & & & \\
\hline 6 & CV-55 & & CV-260 & & & & & & CR-55 \\
\hline 7 & & & & CV-370 & & & & & \\
\hline 8 & CV-75 & & & & & & & & CR-75 \\
\hline 9 & & CV-185 & & & & & & & CR-90 \\
\hline A & & & & & & & & & \\
\hline B & & & & & & & & & \\
\hline C & & & & & & & & & \\
\hline D & & & & & & & & & \\
\hline E & & & & & & & & & \\
\hline F & & & & & & & & & \\
\hline
\end{tabular}
(8) Regenerative resistance type

Set "port" of SV036 (PTYP) from the following table.
\begin{tabular}{|c|c|c|c|}
\hline No. & \begin{tabular}{c}
Regenerative \\
register type
\end{tabular} & \begin{tabular}{c}
Resistance \\
value \((\Omega)\)
\end{tabular} & Watts(W) \\
\hline 0 & & & \\
\hline 1 & GZG200W260HMJ & 26 & 80 \\
\hline 2 & GZG300W130HMJ×2 & 26 & 150 \\
\hline 3 & MR-RB30 & 13 & 300 \\
\hline 4 & MR-RB50 & 13 & 500 \\
\hline 5 & GZG200W200HMJ×3 & 6.7 & 350 \\
\hline 6 & GZG300W200HMJ×3 & 6.7 & 500 \\
\hline 7 & R-UNIT-1 & 30 & 700 \\
\hline 8 & R-UNIT-2 & 15 & 700 \\
\hline 9 & R-UNIT-3 & 15 & 2100 \\
\hline A & & & \\
\hline B & & & \\
\hline C & & & \\
\hline D & & & \\
\hline E & & & \\
\hline F & & & \\
\hline (G) & & & \\
\hline
\end{tabular}
(9) Current limit value
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Motor & Stall rated current A & Maximum current A & Maximum torque N.m & Torque limit \% & Motor & Stall rated current A & Maximum current A & Maximum torque N.m & Torque limit \% \\
\hline HA40N & 3.6 & 17 & 14.2 & 472 & HC52 & 3.94 & 17 & 11.8 & 431 \\
\hline HA80N & 6.6 & 28 & 25.5 & 424 & HC102 & 7.4 & 28 & 21.6 & 378 \\
\hline HA100N & 14 & 42 & 42 & 300 & HC152 & 11.1 & 47 & 35.3 & 423 \\
\hline HA200N & 22 & 57 & 60 & 260 & HC202 & 15.4 & 47 & 41.7 & 305 \\
\hline HA300N & 37 & 85 & 87 & 230 & HC352 & 22.9 & 64 & 59.8 & 279 \\
\hline HA700N & 49 & 113 & 120 & 231 & HC452 & 40.4 & 85 & 87.5 & 210 \\
\hline HA900N & 56 & 141 & 153 & 252 & HC702 & 46.2 & 113 & 120 & 245 \\
\hline HA053 & 1.4 & 3.9 & 0.69 & 279 & HC902 & 55.9 & 141 & 153 & 252 \\
\hline HA13 & 1.4 & 3.9 & 1.37 & 279 & HC53 & 5.8 & 17 & 8.82 & 293 \\
\hline HA23N & 3 & 8.1 & 2.75 & 270 & HC103 & 9.8 & 28 & 16.7 & 286 \\
\hline HA33N & 3 & 8.1 & 5.6 & 270 & HC153 & 15.9 & 47 & 28.4 & 296 \\
\hline HA43N & 5 & 17 & 10.2 & 340 & HC203 & 22.4 & 64 & 40.2 & 286 \\
\hline HA83N & 8.8 & 28 & 19.2 & 318 & HC353 & 33.3 & 85 & 55.9 & 255 \\
\hline HA103N & 19.6 & 57 & 40 & 291 & HC453 & 57.3 & 113 & 79.8 & 197 \\
\hline HA203N & 34.5 & 85 & 56 & 246 & HC703 & 69.2 & 141 & 105 & 210 \\
\hline HA303N & 55 & 113 & 80 & 205 & HC103R & 6.1 & 18.4 & 7.95 & 459 \\
\hline HA703N & 68 & 141 & 105 & 207 & HC153R & 8.8 & 23.4 & 11.9 & 318 \\
\hline HA50NL & 4 & 17 & 13.0 & 425 & HC203R & 14.0 & 37.0 & 15.9 & 300 \\
\hline HA100NL & 8 & 28 & 20.9 & 350 & HC353R & 22.5 & 56.3 & 27.8 & 253 \\
\hline HA150NL & 11.5 & 42 & 31 & 365 & HC503R & 28.0 & 70.0 & 39.8 & 303 \\
\hline HA200NL & 18.2 & 42 & 32 & 231 & & & & & \\
\hline HA300NL & 25 & 57 & 52 & 228 & & & & & \\
\hline HA500NL & 44 & 85 & 72 & 193 & & & & & \\
\hline HA53NL & 5.8 & 28 & 14.1 & 482 & & & & & \\
\hline HA103NL & 11.0 & 42 & 22.5 & 381 & & & & & \\
\hline HA153NL & 16.2 & 42 & 22.8 & 259 & & & & & \\
\hline HA203NL & 21 & 57 & 37 & 271 & & & & & \\
\hline HA303NL & 32 & 85 & 60 & 265 & & & & & \\
\hline HA503NL & 54 & 113 & 78 & 209 & & & & & \\
\hline HA-LH11K2 & 84 & 204 & 158 & 242 & & & & & \\
\hline HA-LH15K2 & 100 & 260 & 215 & 260 & & & & & \\
\hline
\end{tabular}
(Note) When " \(500 \%\) " for SV013 ILMT1 is set, the current limit value is maximum current (torque) one shown in the table above.
Set a parameter at the rate (\%) of the stall rated current to limit the current value (torque) less than the maximum current value.
(10) Standard Parameters for Each Motor
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Motor} & \multicolumn{21}{|c|}{Standard motor} \\
\hline & HA 40N & \[
\begin{aligned}
& \hline \mathrm{HA} \\
& 43 \mathrm{~N}
\end{aligned}
\] & HA 80N & HA 83N & HA 93N & \[
\begin{gathered}
\mathrm{HA} \\
10 \mathrm{Na}
\end{gathered}
\] & \[
\begin{array}{|c}
\hline \mathrm{HA} \\
103 \mathrm{~N}
\end{array}
\] & \[
\mathrm{HA}
\]
\[
200 \mathrm{~N}
\] & \[
\begin{gathered}
\hline \mathrm{HA} \\
203 \mathrm{~N}
\end{gathered}
\] & HA 300 N & \[
\begin{array}{|c}
\hline \mathrm{HA} \\
303 \mathrm{~N}
\end{array}
\] & HA 700N & \[
\begin{gathered}
\mathrm{HA} \\
703 \mathrm{~N}
\end{gathered}
\] & HA 900N & \[
\mathrm{HA}
\] & HA
13 & HA
23 N & \[
\begin{gathered}
\mathrm{HA} \\
33 \mathrm{~N}
\end{gathered}
\] & HAN23 & HAN33 & HAN43 \\
\hline Driver & 05 & 05 & 10 & 10 & 20 & 20 & 35 & 35 & 45 & 45 & 70 & 70 & 90 & 90 & 01 & 01 & 03 & 03 & 03 & 03 & 05 \\
\hline sv001 & \\
\hline sv002 & \\
\hline sv003 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 33 & 25 & 25 & 25 & 33 & 33 & 33 & 33 & 33 & 33 & 33 \\
\hline sv004 & 0 \\
\hline sv005 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 250 & 250 & 250 & 70 & 70 & 100 & 100 & 70 & 70 & 35 \\
\hline sv006 & 0 \\
\hline sv007 & 0 \\
\hline sv008 & 1364 \\
\hline sv009 & 4096 \\
\hline sv010 & 4096 \\
\hline sv011 & 768 \\
\hline sv012 & 768 \\
\hline sv013 & 500 \\
\hline sv014 & 500 \\
\hline sv015 & 0 \\
\hline sv016 & 0 \\
\hline sv017 & 0000 \\
\hline sv018 & \\
\hline sv019 & & & & & & & & & & & & & & & 10 & 10 & & & & & \\
\hline sv020 & - & & & & & & & & & & & & & & 10 & 10 & & & & & \\
\hline sv021 & 60 \\
\hline sv 022 & 150 \\
\hline sv023 & 6 \\
\hline sv024 & 50 \\
\hline sv025 & xx00 & xx80 & xx01 & xx81 & xx8A & xx02 & xx82 & xx03 & xx83 & xx04 & xx84 & xx05 & xx85 & xx06 & 338C & 338D & xx8E & xx8F & xx6E & xx6F & xx60 \\
\hline sv026 & 6 \\
\hline sv027 & 4000 \\
\hline sv028 & 0 \\
\hline sv029 & 0 \\
\hline sv030 & 0 \\
\hline sv031 & 0 \\
\hline sv032 & 0 \\
\hline sv033 & 0000 \\
\hline sv034 & 0000 \\
\hline sv035 & 0000 \\
\hline sv036 & 0000 \\
\hline sv037 & 0 \\
\hline sv038 & 0 \\
\hline sv039 & 0 \\
\hline sv040 & 0 \\
\hline sv041 & 0 \\
\hline sv042 & 0 \\
\hline sv043 & 0 \\
\hline sv044 & 0 \\
\hline sv045 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline sv046 & 0 \\
\hline sv047 & 100 \\
\hline sv048 & 0 \\
\hline sv049 & 15 \\
\hline sv050 & 0 \\
\hline sv051 & 0 & 0 & 0 & , & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline sv052 & 0 \\
\hline sv053 & 0 \\
\hline sv054 & 0 \\
\hline sv055 & 0 \\
\hline sv056 & 0 \\
\hline sv057 & 0 \\
\hline sv058 & 0 \\
\hline sv059 & 0 \\
\hline sv060 & 0 \\
\hline sv061 & 0 \\
\hline sv062 & 0 \\
\hline sv063 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multirow{3}{*}{Motor} & \multicolumn{21}{|c|}{Standard motor} \\
\hline & HA & HA- & HA- & HA- \\
\hline & 40N & 43 N & 80N & 83N & 93N & 100N & 103N & 200N & 203N & 300 N & 303 N & 700N & 703 N & 900N & 053 & 13 & 23N & 33N & N23 & N33 & N43 \\
\hline sv064 & 0 \\
\hline sv065 & 0 \\
\hline OS1 & 2400 & 3600 & 2400 & 3600 & 3600 & 2400 & 3600 & 2400 & 3600 & 2400 & 3600 & 2400 & 3600 & 2400 & 3600 & 3600 & 3600 & 3600 & 3600 & 3600 & 3600 \\
\hline OS2 & 2400 & 3600 & 2400 & 3600 & 3600 & 2400 & 3600 & 3000 & 3600 & 3000 & 3600 & 2400 & 3600 & 2400 & 3600 & 3600 & 3600 & 3600 & 3600 & 3600 & 3600 \\
\hline
\end{tabular}

OS1 indicates the rotation speed (\(\mathrm{r} / \mathrm{min}\)) of the motor to detect the overspeed.
OS2 indicates the rotation speed (\(\mathrm{r} / \mathrm{min}\)) of the motor to detect the overspeed when"0s2" of SV034 (SSF3) is selected.
\begin{tabular}{|c|}
\hline \multirow[b]{2}{*}{Motor} & \multicolumn{15}{|c|}{HC standard motor} & \multicolumn{5}{|l|}{For S type drive unit} & & \\
\hline & \[
\begin{array}{r}
\hline \mathrm{HC} \\
52 \\
\hline
\end{array}
\] & \[
\begin{gathered}
\hline \mathrm{HC} \\
53
\end{gathered}
\] & \[
\begin{aligned}
& \hline \mathrm{HC} \\
& 102 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{HC} \\
& 103 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{HC} \\
& 152 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{HC} \\
& 153 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{HC} \\
& 202 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{HC} \\
& 203 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{HC} \\
& 352
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{HC} \\
& 353 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{HC} \\
& 452 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{HC} \\
& 453
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { HC } \\
& 702 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{HC} \\
& 703 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{HC} \\
& 902 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{HC} \\
& 353
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{HC} \\
& 452 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \mathrm{HC} \\
& 453 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { HC } \\
& 702 \\
& \hline
\end{aligned}
\] & & & \\
\hline Driver & 05 & 05 & 10 & 10 & 20 & 20 & 20 & 35 & 35 & 45 & 45 & 70 & 70 & 90 & 90 & 45S & 45S & 70S & 70S & & & \\
\hline sv001 & \\
\hline sv002 & \\
\hline sv003 & 47 & 47 & 47 & 47 & 47 & 47 & 47 & 47 & 47 & 47 & 47 & 47 & 47 & 47 & 47 & 47 & 47 & 47 & 47 & & & \\
\hline sv004 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv005 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & 200 & & & \\
\hline sv006 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv007 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv008 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & 1364 & & & \\
\hline sv009 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & & & \\
\hline sv010 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & 4096 & & & \\
\hline sv011 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & & & \\
\hline sv012 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & 768 & & & \\
\hline sv013 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & & & \\
\hline sv014 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & 500 & & & \\
\hline sv015 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv016 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv017 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 1000 & 1000 & 1000 & 1000 & & & \\
\hline sv018 & \\
\hline sv019 & \\
\hline sv020 & \\
\hline sv021 & 60 & 60 & 60 & 60 & 60 & 60 & 60 & 60 & 60 & 60 & 60 & 60 & 60 & 60 & 60 & 60 & 60 & 60 & 60 & & & \\
\hline sv022 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & 150 & & & \\
\hline sv023 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & & & \\
\hline sv024 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & 50 & & & \\
\hline sv025 & xxB0 & xxC0 & xxB1 & x CC 1 & xxB2 & xxC2 & xxB3 & xxC3 & xxB4 & xxC4 & xxB5 & xxC5 & xxB6 & xxC6 & xxB7 & xxA4 & X \(\times 95\) & xxA5 & X \(\times 96\) & & & \\
\hline sv026 & & & \\
\hline sv027 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & 4000 & & & \\
\hline sv028 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv029 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv030 & & & \\
\hline sv031 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv032 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv033 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & & & \\
\hline sv034 & 0003 & 0003 & 0003 & 0003 & 0003 & 0003 & 0003 & 0003 & 0003 & 0003 & 0003 & 0003 & 0003 & 0003 & 0003 & 0003 & 0003 & 0003 & 0003 & & & \\
\hline sv035 & 0000 & 0000 & 0000 & 0000 & 0040 & 0040 & 0040 & 0040 & 0040 & 0040 & 0040 & 0040 & 0040 & 0000 & 0000 & 0040 & 0040 & 0040 & 0040 & & & \\
\hline sv036 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & 0000 & & & \\
\hline sv037 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv038 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv039 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv040 & 0 & 0 & 0 & 0 & 0 & 0 & 10240 & 10240 & 10240 & 10240 & 10240 & 10240 & 10240 & 10240 & 10240 & 10240 & 10240 & 10240 & 10240 & & & \\
\hline sv041 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv042 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv043 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv044 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 & & & \\
\hline sv045 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv046 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv047 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & 100 & & & \\
\hline sv048 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv049 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15 & & & \\
\hline sv050 & & & \\
\hline sv051 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv052 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv053 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv054 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv055 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv056 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv057 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv058 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv059 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline sv060 & & & \\
\hline sv061 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & & \\
\hline
\end{tabular}

OS1 indicates the rotation speed (\(\mathrm{r} / \mathrm{min}\)) of the motor to detect the overspeed.
OS2 indicates the rotation speed (\(\mathrm{r} / \mathrm{min}\)) of the motor to detect the overspeed when"os2" of SV034 (SSF3) is selected.

\subsection*{5.7 Alarms and Warnings}

\section*{§ CAUTION}

When an alarm occurs, eliminate the cause and make sure that the operation signal is not input, secure the safety and reset the alarm before starting the operation again.

When an alarm occurs in the servo drive unit, the servo drive unit will carry out the base interception and the motor will coast to a stop. In such case, turn the power OFF with an external sequence. (Refer to "5.9 Main circuit and brake connection".)
To reset an alarm, remove the cause, and then turn the power ON.
Important When an alarm related to overcurrent or overload occurs, do not repeat operation by turning the power OFF to ON without eliminating the cause of an alarm, otherwise the element may be damaged due to temperature rise.

The drive unit state is indicated by the code on the display of the servo drive unit, while the data is transmitted to the NC side. When an alarm occurs, the alarm is also indicated on the NC screen. (The alarm No. on the NC screen may differ from the alarm No. of the servo drive unit. For detail, refer to the Instruction Manual for NC.)
Refer to "MDS SERIES MAINTENANCE MANUAL" (BNP-B2046) for the troubleshooting.
\begin{tabular}{|c|l|l|}
\hline\(\#\) & \multicolumn{1}{|c|}{ Status } & \multicolumn{1}{c|}{ Content } \\
\hline AA & INITIALIZE & Waiting for NC power start up (NC power ON \(\rightarrow\) OFF). \\
\hline Ab & INITIALIZE & Waiting for NC power start up \\
\hline AC & INITIALIZE & Requesting parameter transfer \\
\hline Ad & INITIALIZE & Waiting for parameter transfer \\
\hline AE & INITIALIZE & Waiting for main servo IT start \\
\hline & & \\
\hline b* & READY OFF & Ready OFF \\
\hline C* & SERVO OFF & Servo OFF \\
\hline d* & SERVO ON & Servo ON \\
\hline 9* & WARNING & Warning \\
\hline E* & WARNING & \begin{tabular}{l}
Warning (However, E6 and E7 indicate the status other \\
than the alarm or warning)
\end{tabular} \\
\hline\(* *\) & ALARM & Alarm \\
\hline
\end{tabular}

Display example (When the concerned drive unit is set to 1st axis.)
(1) At servo ON
(2) When alarm occurs (Displays by flickering)

\section*{(1) Details of alarm}

Note 1. RS PR : Turn the CNC power OFF to reset.
AR : Turn the servo driver power OFF to reset.
* : This indicates the warning and does not turn the servo OFF.

Note 2. A/C A : Alarm that occurs per axis.
C : Common alarm in the driver.
V : Power supply regenerative power supply alarm
R : Resistance regenerative power supply alarm
Note 3. The servo alarms and servo warnings are also the same for the 2-axis servo drive unit.
<Servo Alarms>
\begin{tabular}{|c|l|l|l|}
\hline Display & \multicolumn{1}{|c|}{ Abbr. } & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Meaning } \\
\hline \(\mathbf{1 1}\) & ASE & \begin{tabular}{l}
Spindle selection \\
error
\end{tabular} & \begin{tabular}{l}
In MDS-B-B24 driver, the rotary switches for both \\
axes are set to the same axis number when using \\
the 2-axis integrated drive unit. \\
Otherwise, the switches are set to an illegal value.
\end{tabular} \\
\hline \(\mathbf{1 2}\) & ME & Memory error & \begin{tabular}{l}
An error was detected in a memory IC or FB IC by \\
self-check to be made during driver power-on.
\end{tabular} \\
\hline \(\mathbf{1 3}\) & SWE & S/W process error & \begin{tabular}{l}
The S/W process did not end within the specified \\
time.
\end{tabular} \\
\hline \(\mathbf{1 4}\) & SWE2 & S/W process error2 & The processor of current does not work properly. \\
\hline \(\mathbf{1 7}\) & ADE & AD converter error & \begin{tabular}{l}
An error was detected in the A/D converter for \\
current detection by self-check during driver power \\
ON.
\end{tabular} \\
\hline \(\mathbf{1 8}\) & WAT & \begin{tabular}{l}
Initial \\
communication \\
error
\end{tabular} & \begin{tabular}{l}
Initial communication with the high-speed serial \\
detector connected with the motor end could not be \\
performed.
\end{tabular} \\
\hline \(\mathbf{1 A}\) & Stei & \begin{tabular}{l}
Serial detector \\
communication \\
error (SUB)
\end{tabular} & \begin{tabular}{l}
lnitial communication with the detector cannot be \\
performed in the system that uses OHAR5K-ET or \\
high-speed serial detector as the machine end \\
detector.
\end{tabular} \\
\hline \(\mathbf{1 B}\) & Scpu & CPU error (SUB) & \begin{tabular}{l}
In the high-speed serial detector connected with the \\
machine end, an error was detected in the data \\
stored in an EEPROM. \\
Refer to "(3)".
\end{tabular} \\
\hline \(\mathbf{1 C}\) & Sled & \begin{tabular}{l}
EEPROM \\
LED abnormality \\
(SUB)
\end{tabular} & \begin{tabular}{l}
In the linear scale connected with the machine end, \\
an error in an EEPROM was detected. \\
OTherwise, in the high-speed serial detector \\
connected with the machine end, a deteriorated \\
LED was detected. \\
Refer to "(3)".
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline Display & \multicolumn{1}{|c|}{ Abbr. } & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Meaning } \\
\hline \(\mathbf{1 D}\) & Sdat & Data error (SUB) & \begin{tabular}{l}
In the high-speed serial detector connected with the \\
machine end, an error was detected in a position \\
within one rotation. \\
Refer to "(3)".
\end{tabular} \\
\hline \(\mathbf{1 E}\) & Sohe & \begin{tabular}{l}
ROM, RAM/ \\
Thermal error (SUB)
\end{tabular} & \begin{tabular}{l}
In the linear scale connected with the machine end, \\
an error on ROM or RAM was detected. \\
Otherwise, in the high-speed serial detector \\
connected with the machine end, the built-in \\
thermal protector functioned. \\
Refer to "(3)".
\end{tabular} \\
\hline \(\mathbf{1 F}\) & Stre & \begin{tabular}{l}
NS2
\end{tabular} \\
\hline \(\mathbf{2 1}\) & SDAT & \begin{tabular}{l}
Serial detector \\
Communication \\
error (SUB)
\end{tabular} & \begin{tabular}{l}
In the high-speed serial detector connected with the \\
machine end, communication with the detector \\
stopped.
\end{tabular} \\
\hline \(\mathbf{2 5}\) & ABSE & No signal 2 & \begin{tabular}{l}
An error was detected in the ABZ phase in a \\
closed-loop system.
\end{tabular} \\
\hline \(\mathbf{2 6}\) & SLED & NAE error & data lost
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Display & Abbr. & Name & Meaning \\
\hline 2E & SRRE & ROM, RAM error & The linear scale connected with the motor end detects an error on a ROM or RAM. Refer to "(3)". \\
\hline 2F & STRE & Serial detector Communication error & In the high-speed serial detector connected with the motor end, communication with the detector stopped. \\
\hline 31 & OS & Overspeed & A speed exceeding the motor's tolerable speed was detected. (Motor maximum speed * 1.2) \\
\hline 32 & PMOC & Power module error (Overcurrent) & An overcurrent error occurred in the IPM used for the inverter. \\
\hline 34 & DP & CNC communication CRC error & An error was detected in the communication data sent from the CNC to the driver. \\
\hline 35 & DE & CNC communication Data error & An error was detected in the movement command data from the CNC. \\
\hline 36 & TE & CNC communication error & Communication from the CNC stopped. \\
\hline 37 & PE & Initial parameter error & An illegal parameter was detected among the parameters sent from the CNC during initialization by CNC power ON. \\
\hline 38 & TP1 & CNC communication Protocol error 1 (frame) & An error was detected in the communication frame sent from the CNC. \\
\hline 39 & TP2 & CNC communication Protocol error 2 (information) & An error was detected in the axis information data sent from the CNC. \\
\hline 3A & OC & Overcurrent & The motor drive current is too large. \\
\hline 3B & PMOH & Power module error (overheat) & An overheat was detected in the IPM used for the inverter. \\
\hline 42 & FE1 & Feedback error 1 & A feedback pulse skip or Z-phase error was detected in the position detector. \\
\hline 43 & FE2 & Feedback error 2 & \begin{tabular}{l}
Excessive difference was detected in the feedback amount between the motor end detector and the machine end detector during a closed loop. \\
Otherwise, a Feed back IC error was detected during semi-closed loop.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Display & Abbr. & Name & Meaning \\
\hline 46 & OHM & Motor overheat / thermal error & An overheat error was detected in the driving motor. Otherwise, a thermal protector functioned, which is built in the high-speed serial detector connected with the motor end. \\
\hline 50 & OL1 & Overload 1 & The load level of the servomotor or servo driver can be calculated from the motor current. This load level has reached the overload level that is specified by the overload detection level (sv022: OLL) and overload-time constant (sv021: OLT). \\
\hline 51 & OL2 & Overload 2 & A current command at least \(95 \%\) of the maximum driver capacity continued for 1.0 second or more. \\
\hline 52 & OD1 & Excessive error 1 & The difference between the ideal and actual positions has exceeded parameter setting value SV023 (OD1) or SV053 (OD3) when the servo was turned ON. \\
\hline 53 & OD2 & Excessive error 2 & The difference between the ideal and actual positions has exceeded parameter setting value SV026 (OD2) when the servo was turned OFF. \\
\hline 54 & OD3 & Excessive error 3 & When an excessive error 1 is detected, no motor current flows. This error occurs when the power cable is loose or disconnected or no voltage is applied to the bus. \\
\hline 58 & CLEO & Collision detection0 & A collision detection method 1 error was detected in G0 modal (rapid traverse feed) mode. \\
\hline 59 & CLE1 & Collision detection1 & A collision detection method 1 error was detected in G1 modal (cutting speed) mode. \\
\hline 5A & CLE2 & Collision detection2 & A collision detection method 2 error was detected. \\
\hline 6F & PSE & Power supply alarm & The power supply unit is not connected. Otherwise, an error was detected in the AD converter of the power supply. \\
\hline 7F & & Power turning ON request alarm & \begin{tabular}{l}
The control mode (Standard drive unit / High-gain drive unit) recognized by EEPROM is different from that designated by a parameter. \\
The power need be turned ON again to change the mode set with the parameter.
\end{tabular} \\
\hline 80 & HCN & HR unit Connection error & The errors such as illegal connection or disconnected cable are detected in MDS-B-HR which is connected with the motor end. \\
\hline 81 & HHS & HR unit HSS communication error & MDS-B-HR connected with the motor end detects a communication error between the absolute position detection scale. \\
\hline 83 & HSC & HR unit Scale recognition error & MDS-B-HR connected with the motor end did not recognize the analog-wave cycle of the connected scale. \\
\hline 84 & HCPU & HR unit CPU error & The CPU of MDS-B-HR connected with the motor end doesn't operate properly. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline Display & \multicolumn{1}{|c|}{ Abbr. } & \multicolumn{1}{c|}{ Name } & \multicolumn{1}{c|}{ Meaning } \\
\hline \(\mathbf{8 5}\) & HDAT & \begin{tabular}{l}
HR unit \\
Data error
\end{tabular} & \begin{tabular}{l}
In MDS-B-HR connected with the motor end, an \\
error was detected in the analog data.
\end{tabular} \\
\hline \(\mathbf{8 6}\) & HMAG & \begin{tabular}{l}
HR unit \\
Magnetic polarity \\
error
\end{tabular} & \begin{tabular}{l}
In MDS-B-HR connected with the motor end, an \\
error was detected in the magnetic polarity data.
\end{tabular} \\
\hline \(\mathbf{8 8}\) & WD & Watch dog & Servo system operation is abnormal. \\
\hline \(\mathbf{8 9}\) & Hcn & \begin{tabular}{l}
HR unit \\
Connection error \\
(SUB)
\end{tabular} & \begin{tabular}{l}
The errors such as illegal connection or dis- \\
connected cable are detected in MDS-B-HR which \\
is connected with the machine end.
\end{tabular} \\
\hline \(\mathbf{8 A}\) & Hhs & \begin{tabular}{l}
HR unit \\
HSS \\
communication \\
error (SUB)
\end{tabular} & \begin{tabular}{l}
MDS-B-HR connected with the machine end \\
detects a communication error between the \\
absolute position detection scale.
\end{tabular} \\
\hline \(\mathbf{8 C}\) & Hsc & \begin{tabular}{l}
HR unit \\
Scale recognition \\
error (SUB)
\end{tabular} & \begin{tabular}{l}
MDS-B-HR connected with the machine end did not \\
recognize the analog-wave cycle of the connected \\
scale.
\end{tabular} \\
\hline \(\mathbf{8 D}\) & Hcpu & \begin{tabular}{l}
HR unit \\
CPU error (SUB)
\end{tabular} & \begin{tabular}{l}
The CPU of MDS-B-HR connected with the machine \\
end doesn't operate properly.
\end{tabular} \\
\hline \(\mathbf{8 E}\) & Hdat & \begin{tabular}{l}
HR unit \\
Data error (SUB)
\end{tabular} & \begin{tabular}{l}
In MDS-B-HR connected with the machine end, an \\
error was detected in the analog data.
\end{tabular} \\
\hline \(\mathbf{8 F}\) & Hmag & \begin{tabular}{l}
HR unit \\
Magnetic polarity \\
error (SUB)
\end{tabular} & \begin{tabular}{l}
In MDS-B-HR connected with the machine end, an \\
error was detected in the magnetic polarity data.
\end{tabular} \\
\hline
\end{tabular}
<Servo Warnings>
\begin{tabular}{|c|c|c|c|}
\hline Display & Abbr. & Name & Meaning \\
\hline 90 & WST & Initial communication error in lowspeed serial format & Initial communication with the absolute position linear scale cannot be performed. \\
\hline 91 & WAS & Communication error in low-speed serial format & An error was detected in communication with the detector in the absolute position detection system using OHA 25K/OHA 25K-ET/Absolute position linear scale. \\
\hline 92 & WAF & Protocol error in low-speed serial format & An error was detected in the data from the detector in the absolute position detection system using OHA 25K/OHA 25K-ET/Absolute position linear scale. \\
\hline 93 & WAM & Absolute position fluctuation & The absolute position to be detected at CNC power ON moves more than the tolerable amount. \\
\hline 96 & MPE & MP scale feedback error & There is an excessive difference in the feedback amount between the motor end detector and the MP scale in the absolute position detector. \\
\hline 97 & MPO & MP scale offset error & An error was detected in the offset data to be read during initialization by CNC power ON in the absolute position detector of the MP scale. \\
\hline 9 E & WAn & High-speed serial detector Rotation count error & An error was detected in the rotation counter in OSE104/OSA104/OSE105/OSA105/OSE104-ET/ OSA104-ET/OSE105-ET/OSA105-ET. The absolute position cannot be corrected. \\
\hline 9F & WAB & Battery voltage drop & The voltage of the battery to be supplied to the absolute position detector dropped. \\
\hline E1 & WOL & Overload warning & An \(80 \%\) level of the overload 1 alarm was detected. \\
\hline E3 & WAC & Absolute position counter warning & There is a difference between absolute and relative position data. \\
\hline E4 & WPE & Parameter warning & The parameter out of the setting range was set. \\
\hline E6 & AXE & Control axis removal & A control axis removal command has been issued. \\
\hline E7 & NCE & CNC emergency stop & CNC is in emergency stop state. \\
\hline
\end{tabular}

\section*{(2) Error parameter No. at initial parameter error}

When the initial parameter error (alarm 37) occurs, the Diagnosis screen of CNC displays which parameter has caused an error. The display method differs according to the CNC type. Thus, refer to the instruction manuals for each CNC to be used.

The displayed No. at this time is normally indicated the parameter No. (svXXX). In addition to this, there is a special 3-digit No. (Refer to the table below.)
In this case, the error occurrence is attributed to several parameters. Therefore, the related parameters must be properly set.
\begin{tabular}{|c|l|l|}
\hline Display & \multicolumn{1}{|c|}{ Details } & \multicolumn{1}{c|}{ Related Parameters } \\
\hline \(\mathbf{6 9}\) & \begin{tabular}{l}
The maximum rapid traverse feedrate set with \\
CNC is illegal. \\
Normally, this error does not occur. \\
An error related to the CNC system S/W is \\
considered.
\end{tabular} & CNC axis parameter "rapid". \\
\hline \(\mathbf{7 1}\) & \begin{tabular}{l}
The maximum cutting feedrate set with CNC \\
is illegal. \\
Normally, this error does not occur. \\
An error related to the CNC system S/W is \\
considered.
\end{tabular} & CNC axis parameter "clamp". \\
\hline \(\mathbf{1 0 1}\) & \begin{tabular}{l}
The number of constants to be used in the \\
following functions is large: \\
• Electronic gears \\
• Position loop gain \\
• Speed feedback conversion \\
Check that all the related parameters are \\
specified correctly.
\end{tabular} & \begin{tabular}{l}
sv001:PC1, sv002:PC2, sv003:PGN1 \\
sv018:PIT, sv019:RNG1, sv020:RNG2 \\
sv049:PGN1sp
\end{tabular} \\
\hline \(\mathbf{1 0 2}\) & \begin{tabular}{l}
Parameters for absolute position detection \\
are set to ON during the high-speed serial \\
incremental detector OSE104 or OSE105 is \\
connected. \\
Set the parameters for absolute position \\
detection to OFF. \\
To detect an absolute position, replace the \\
incremental specification detector with an \\
absolute position detector.
\end{tabular} & sv017:SPEC, sv025:MTYP
\end{tabular}

\section*{(3) Detector alarm}

As the following alarms are detected by each detector, the details vary with the detector connected. Check the alarm details conforming to the detector being used.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline No. & \[
\begin{aligned}
& \hline \text { OSE104(-ET)/ } \\
& \text { OSA104(-ET) } \\
& \text { OSE105(-ET)/ } \\
& \text { OSA105(-ET) }
\end{aligned}
\] & FUTABA Linear scale FME/FLE type & Mitutoyo AT41 & Mitutoyo
AT342 & HEIDENHAIN
LC191M & Remark s \\
\hline 1B & Connection to CN3 CPU error & & & Connection to CN3 Initialization error & Connection to CN3 Initialization error & \multirow{8}{*}{} \\
\hline 1C & Connection to CN3
LED error & & & Connection to CN3 EEPROM error & Connection to CN3 EEPROM error & \\
\hline 1D & Connection to CN3 Data error & & & Connection to CN3 Unconformity of INC and ABS data & Connection to CN3 Unconformity of incremental and absolute data & \\
\hline 1E & Connection to CN3 Encoder thermal error & & & Connection to CN3 ROMRAM error & Connection to CN3 ROMRAM error & \\
\hline 27 & & Connection to CN3 Memory error & Connection to CN3 CPU error & Connection to CN3 CPU error & Connection to CN3 CPU error & \\
\hline 28 & & & & Connection to CN3 Photoelectric over speed & Connection to CN3 Over speed & \\
\hline 29 & & Connection to CN3 Absolute position detection circuit error & Connection to CN3 Absolute position detection circuit error & Connection to CN3 Capacitance error & Connection to CN3 Absolute data error & \\
\hline 2A & & Connection to CN3 Relative position detection circuit error & Connection to CN3 Relative position detection circuit error & Connection to CN3 Photoelectric error & Connection to CN3 Incremental data error & \\
\hline 2B & Connection to CN2 CPU error & & & Connection to CN2 Initialization error & Connection to CN2 Initialization error & \multirow{8}{*}{} \\
\hline 2 C & Connection to CN2 LED error & & & Connection to CN2 EEPROM error & Connection to CN2 EEPROM error & \\
\hline 2D & Connection to CN2 Data error & & & Connection to CN2 Unconformity of photoelectric and electrostatic data & Connection to CN2 Unconformity of incremental and absolute data & \\
\hline 2E & & & & Connection to CN2 ROMRAM error & Connection to CN2 ROMRAM error & \\
\hline 48 & & & & Connection to CN2 CPU error & Connection to CN2 CPU error & \\
\hline 49 & & & & Connection to CN2 Photoelectric over speed & Connection to CN2 Over speed & \\
\hline 4 A & & & & Connection to CN2 Capacitance error & Connection to CN2 Absolute data error & \\
\hline 4B & & & & Connection to CN2 Photoelectric error & Connection to CN2 Incremental data error & \\
\hline
\end{tabular}

\subsection*{5.8 Explanation of connector and terminal block}
\begin{tabular}{|c|c|c|c|c|}
\hline & & Name & Application & Remarks \\
\hline \multicolumn{2}{|l|}{Connector} & \begin{tabular}{l}
CN1A \\
CN1B \\
CN9 \\
CN4 \\
CN2 \\
CN3 \\
CN20
\end{tabular} & \begin{tabular}{l}
For connection with NC and high-order axis \\
For connection with battery unit and low-order axis \\
For maintenance (not used normally) \\
For connection with power supply \\
For connection with motor end detector \\
For connection with machine end detector \\
External brake output contact point
\end{tabular} & For combination of V1-110/150 dynamic brake contact output \\
\hline \multirow{3}{*}{Terminal block} & TE2 & \[
\begin{aligned}
& \text { L+ } \\
& \text { L- }
\end{aligned}
\] & Converter voltage input (+) Converter voltage input (-) & \\
\hline & TE3 & \[
\begin{aligned}
& \mathrm{L} 11 \\
& \mathrm{~L} 21
\end{aligned}
\] & 200VAC single-phase input & \\
\hline & TE1 & \[
\begin{gathered}
\mathrm{U} \\
\mathrm{~V} \\
\mathrm{~W} \\
\text { e }
\end{gathered}
\] & U-phase output for motor drive V-phase output for motor drive W-phase output for motor drive Ground & \\
\hline
\end{tabular}

MDS - C1 - V1

\subsection*{5.9 Main circuit and brake connection}

\section*{\. WARNING}

Ground the servo drive unit and servomotor with Class C(former class 3) grounding or higher.

\section*{. CAUTION}
1. Correctly connect the output side (terminals U, V, W). Failure to do so could lead to abnormal operation of the servomotor.
2. Do not apply a voltage other than that specified in Instruction Manual on each terminal. Failure to observe this item could lead to ruptures or damage, etc.

\subsection*{5.9.1 Main circuit}

\section*{Precautions for connections}
(1) The wires and crimp terminals will differ according to the capacity.
(Refer to "8.5 Selection of wire size in the Chapter I Servo/Spindle System Configuration Section".)
(2) Always ground (\(\Theta\)) the power supply.
(3) The phase order of the power supply terminals L1, L2, L3 is random.
(4) Precautions for connecting servo drive terminals \(\mathrm{U}, \mathrm{V}, \mathrm{W}\)
a. Always observe the phase order for the servo drive unit terminals \(\mathrm{U}, \mathrm{V}, \mathrm{W}\) and motor side pins A , \(B, C\). The motor may vibrate and rotate suddenly if the phase order is mistaken. The phases cannot be reversed for reverse rotation.
b. Never perform connections that might apply the power on the servo drive output terminals U, V, W. Never ground the servo drive output terminals U, V, W or connect so that grounding may occur as this may destroy the servo drive.
(5) The Cannon plug used will differ according to the motor. Refer to section "2.9 (3)" for the connection drawing of the brake exciter circuit for motor with electromagnetic brake. Refer to section "2.8 (2)" for the terminal box type motor.
(6) Refer to the "I. Servo/Spindle System Configuration Section" for the selection of the contactor, AC reactor and Circuit Breaker connected to the power supply.
(7) Make sure that the specified power is supplied to the servo drive power terminals (L1, L2, L3). If the power does not have the specified voltage, use a transformer.
(8) Do not directly apply commercial power on the motor.
(9) Check once again that the wires are connected correctly as indicated in the wiring diagram.

\subsection*{5.9.2 Brake}

Contact connection terminals for brake (EM1, EM2)
A contact for the brake has been newly installed on the MDS-C1-V1 servo drive unit. This contact can be used for exciting the motor with brake. Connect the electromagnetic brake cable to connector CN20.

\section*{Contact for brake specifications}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Type } & \multicolumn{1}{c|}{ Specifications } \\
\hline Rated control capacity (resistance load) & \(8 \mathrm{~A} \mathrm{250V} \mathrm{AC/5A} \mathrm{30V} \mathrm{DC}\) \\
\hline Contact max. tolerable electricity (resistance load) & \(2000 \mathrm{VA} \mathrm{150WA}\) \\
\hline Contact max. tolerable voltage/current & \(380 \mathrm{~V} \mathrm{AC} \mathrm{/8A}\) \\
\hline
\end{tabular}

\section*{Examples of connection with contact for brake}
(1) For AC OFF

(2) For DC OFF

Refer to "2.9 Motors with electromagnetic brake" for the electromagnetic brake specifications and application.

\subsection*{5.10 Wiring system diagrams for systems}
(1) Servo system configuration table

\section*{(2) Cable system drawings for each specification}

\section*{- Semi-closed loop position detection system}
(a) 1-axis servo drive unit

(b) 2-axis servo drive unit

- Ball screw end position detection system

- Machine end detection system

- Absolute position linear scale detection system

\subsection*{5.11 D/A output function}

\subsection*{5.11.1 Outline}

The D/A output function is mounted in the standard system of the MDS Series. Thus, the PCB for analog monitoring required in the conventional digital servo system is not longer required.

\subsection*{5.11.2 Hardware specifications}
\begin{tabular}{|ll|}
\hline \multicolumn{2}{|c|}{ MDS-C1-VX } \\
\hline 8-bit \(0 \sim 5 \mathrm{~V}\) \\
\hline 2 channels \\
\hline Output pins & \begin{tabular}{l}
\(\mathrm{CH} 1: \mathrm{CN} 9-9\) pin \\
\\
\\
\\
\\
\\
\\
\\
GN2 \(: \mathrm{CN}: \mathrm{CN}-19\) pin
\end{tabular} \\
\hline
\end{tabular}
* The 0 level (center) of the data is 2.5 V .

\subsection*{5.11.3 Parameters}

The data No. and output magnification for each channel is set with the following parameters.
\begin{tabular}{|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Description } \\
\hline SV061 & D/A channel 1 data No. \\
\hline SV062 & D/A channel 2 data No. \\
\hline SV063 & D/A channel 1 output magnification \\
\hline SV064 & D/A channel 2 output magnification \\
\hline
\end{tabular}

\subsection*{5.11.4 Output data No.}

The data to be output to SV061 and SV062 is set. When -1 is set for the output data No., D/A output will not take place at that channel.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{No.} & \multicolumn{2}{|l|}{CH1} & \multicolumn{2}{|l|}{CH2} \\
\hline & Output data & Unit & Output data & Unit \\
\hline -1 & D/A output not selected & & D/A output not selected & \\
\hline 0 & Speed feedback & \(\mathrm{r} / \mathrm{min}\) & Current command & Stall rated current \% \\
\hline 1 & Current command & Stall rated current \% & Current command & Stall rated current \% \\
\hline 2 & Current command & Stall rated current \% & Current command & Stall rated current \% \\
\hline 3 & Current feedback & Stall rated current \% & Current feedback & Stall rated current \% \\
\hline 4 & Speed feedback low -order & r/min & Speed feedback low -order & r/min \\
\hline 5 & Speed feedback high-order & \(\mathrm{r} / \mathrm{min}\) & Speed feedback high-order & \(\mathrm{r} / \mathrm{min}\) \\
\hline 6 & Position droop low -order & Interpolation unit & Position droop low -order & Interpolation unit \\
\hline 7 & Position droop high-order & Interpolation unit & Position droop high-order & Interpolation unit \\
\hline 8 & Position F \(\triangle\) T low -order & Interpolation unit/ & Position F \(\triangle\) T low-order & Interpolation unit/ \\
\hline & & NC communication cycle & & NC communication cycle \\
\hline 9 & Position \(\mathrm{F} \triangle \mathrm{T}\) high-order & Interpolation unit/ NC communication cycle & Position F \(\triangle T\) high-order & Interpolation unit/ NC communication cycle \\
\hline 10 & Position command low -order & Interpolation unit & Position command low -order & Interpolation unit \\
\hline 11 & Position command high-order & Interpolation unit & Position command high-order & Interpolation unit \\
\hline 12 & Feedback position low -order & Interpolation unit & Feedback position low -order & Interpolation unit \\
\hline 13 & Feedback position high-order & Interpolation unit & Feedback position high-order & Interpolation unit \\
\hline 125 & Test output saw -tooth wave & \(\pm 5 \mathrm{~V}\) & Test output saw -tooth wave & \(\pm 5 \mathrm{~V}\) \\
\hline 126 & Test output rectangular wave & \(\pm 5 \mathrm{~V}\) & Test output rectangular wave & \(\pm 5 \mathrm{~V}\) \\
\hline 127 & Test output 0V & \(\pm 5 \mathrm{~V}\) & Test output 0V & \(\pm 5 \mathrm{~V}\) \\
\hline
\end{tabular}

\subsection*{5.11.5 Setting of output magnification}

The output magnification is set in SV063 and SV064. When " 256 " is set, the magnification will be 1-fold. When the parameter is set to "A", \(\mathrm{A} / 256\) will be the magnification.
Since the D/A converter input is 7bit excluding the sign bit, fix the magnification parameter A as (Input data) \(* A / 256 \leq 127\). The output polarity will be reversed if a negative value is set.

Analog output voltage \((\mathrm{V})=\left\{\right.\) DATA \(\left.* \frac{\mathrm{~A}}{256} * \frac{\text { Output max. }}{\text { voltage }}\right\}------\) Set the value in \(\}\) to the + Offset voltage value less than the D/A output max. voltage in the table below.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
D/A output \\
max. voltage
\end{tabular} & Offset voltage \\
\hline \(2.5(\mathrm{~V})\) & \(2.5(\mathrm{~V})\) \\
\hline
\end{tabular}

\section*{(Example) Speed feedback}

The output value is \(\mathrm{r} / \mathrm{min}\). Thus, 2000 will be output at a speed of \(2000 \mathrm{r} / \mathrm{min}\). When the parameter is set to 256 (magnification 1), the D/A output woltage will be 39.06 V as shown below, exceeding the D/A output voltage 2.5 V .
\[
2000 / 128 * 2.5(\mathrm{~V})=39.06(\mathrm{~V})
\]

In this case, set the parameter to 16 (magnification \(1 / 16\)) to obtain the \(D / A\) output voltage as shown below.
\[
2000 * 2.5 /(128 * 16)=2.44(V)
\]

Thus, the analog output voltage will be 2.94 V .
\[
2.44(\mathrm{~V})+2.5(\mathrm{~V})=2.94(\mathrm{~V})
\]

Analog output voltage

\subsection*{5.11.6 Others}

The D/A output channel has two channels even in the 2-axis servo drive. Thus, set the output No. for the axis not to be observed in the 2-axis servo drive to - 1 . If the D/A output of each channel is set for both axes, the L-axis data will be output. If -1 is set in the \(\mathrm{D} / \mathrm{A}\) output No. for both axes, the output will be 2.5 V .
6. MDS-C1-V2 Servo Drive III-158
6.1 Model configuration III-158
6.2 Servo drive unit specifications III-159
6.3 Hardware setting III-163
6.4 Status display III-164
6.5 Explanation of terminal block and connectors III-166
6.6 Main circuit connection III-167

\section*{6. MDS-C1-V2 Servo Drive}

\subsection*{6.1 Model configuration}

\section*{2-axis servo drive unit model designation}

The power class symbols are the same as for the MDS-C1-V1 servo drive.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Symbol} & \multirow[b]{2}{*}{Capacity} & \multicolumn{4}{|c|}{Applicable motor} \\
\hline & & Standard 2000r/min & Standard 3000r/min & Low inertia L-type 2000r/min & Low inertia L-type 3000r/min \\
\hline 01 & 0.1 kW & & \[
\begin{aligned}
& \text { HA053 } \\
& \text { HA13 } \\
& \hline
\end{aligned}
\] & & \\
\hline 03 & 0.3 kW & & \[
\begin{aligned}
& \text { HA23N } \\
& \text { HA33N } \\
& \hline
\end{aligned}
\] & & \\
\hline 05 & 0.5 kW & \[
\begin{gathered}
\text { HC52 } \\
\text { (HA40N) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{HC} 53 \\
(\mathrm{HA} 43 \mathrm{~N})
\end{gathered}
\] & HA50NL & \\
\hline 10 & 1.0 kW & \[
\begin{aligned}
& \text { HC102 } \\
& \text { (HA80N) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { HC103 } \\
& \text { (HA83N) }
\end{aligned}
\] & HA100NL & \[
\begin{gathered}
\text { HA53NL } \\
\text { (HC103R) } \\
\text { (HC153R) } \\
\hline
\end{gathered}
\] \\
\hline 20 & 2.0 kW & \[
\begin{gathered}
\text { HC152, HC202 } \\
(H A 100 N)
\end{gathered}
\] & HC153 & HA150NL HA200NL & HA103NL HA153NL (HC203R) \\
\hline 35 & 3.5 kW & \[
\begin{gathered}
\text { HC352 } \\
\text { (HA200N) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { HC203 } \\
\text { (HA103N) } \\
\hline
\end{gathered}
\] & HA300NL & \[
\begin{aligned}
& \text { HA203NL } \\
& (\mathrm{HC} 353 \mathrm{R})
\end{aligned}
\] \\
\hline 45 & 4.5 kW & \[
\begin{gathered}
\text { HC452 } \\
\text { (HA300N) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { HC353 } \\
\text { (HA203N) } \\
\hline
\end{gathered}
\] & HA500NL & \[
\begin{aligned}
& \text { HA303NL } \\
& \text { (HC503R) }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
45S \\
(With specifications limit)
\end{tabular} & 4.5 kW & \begin{tabular}{l}
HC452 \\
* Specification limit: 78\% of the motor stall rating
\end{tabular} & \begin{tabular}{l}
HC353 \\
* Specification limit: 94\% of the motor stall rating
\end{tabular} & & \\
\hline \begin{tabular}{l}
\(70 S\) \\
(With specifications limit)
\end{tabular} & 7.0 kW & \begin{tabular}{l}
HC702 \\
* Specification limit: \(90 \%\) of the motor stall rating
\end{tabular} & \begin{tabular}{l}
HC453 \\
* Specification limit: 82\% of the motor stall rating
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{6.2 Servo drive unit specifications}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{13}{|c|}{2-axis integrated servo drive unit MDS-C1-V2 Series} \\
\hline Model & MDS-C1-V2- & 0101 & 0301 & 0303 & 0501 & 0503 & 0505 & 1003 & 1005 & 1010 & 2010 & 2020 & 3510 S & 3510 \\
\hline \multicolumn{2}{|l|}{Rated output [kW]} & 0.1+0.1 & 0.3+0.1 & 0.3+0.3 & 0.5+0.1 & 0.5+0.3 & 0.5+0.5 & 1.0+0.3 & 1.0+0.5 & 1.0+1.0 & 2.0+1.0 & 2.0+2.0 & 3.5+1.0 & 3.5+1.0 \\
\hline \multirow[b]{2}{*}{Outpu t} & \[
\begin{aligned}
& \text { Rated } \left.\begin{array}{l}
\text { Roltage }
\end{array}\right]
\end{aligned}
\] & \multicolumn{13}{|c|}{155VAC} \\
\hline & \[
\begin{aligned}
& \hline \begin{array}{l}
\text { Rated } \\
\text { current }
\end{array} \text { [A] } \\
& \hline
\end{aligned}
\] & \(0.95+0.95\) & 2.9+0.95 & \(2.9+29\) & 3.4+0.95 & \(3.4+2.9\) & 3.4+3.4 & 6.8+2.9 & 6.8+3.4 & 6.8+6.8 & \(13.0+6.8\) & 13.0+13.0 & 16.0+6.8 & 16.0+6.8 \\
\hline \multirow[b]{2}{*}{Input} & \[
\begin{array}{|l|}
\hline \begin{array}{l}
\text { Rated } \\
\text { voltage }
\end{array} \\
\hline \mathrm{V}]
\end{array}
\] & \multicolumn{13}{|c|}{270-311VDC} \\
\hline & \[
\begin{aligned}
& \left.\begin{array}{l}
\text { Rated } \\
\text { current }
\end{array}\right]
\end{aligned}
\] & 2 & 4 & 6 & 5 & 7 & 8 & 10 & 11 & 14 & 21 & 28 & 24 & 24 \\
\hline \multirow{3}{*}{Control power supply} & Voltage [V] & \multicolumn{13}{|c|}{200/200-230VAC} \\
\hline & \[
\] & \multicolumn{13}{|c|}{50/60Hz} \\
\hline & Curren [A] & \multicolumn{13}{|c|}{Max. 0.2A} \\
\hline \multicolumn{2}{|l|}{Control system} & \multicolumn{13}{|c|}{Sine-wave PWM control system/current control system} \\
\hline \multicolumn{2}{|l|}{Braking} & \multicolumn{13}{|c|}{Regeneration braking and dynamic braking} \\
\hline \multicolumn{2}{|r|}{Dynamic} & \multicolumn{13}{|c|}{Built-in} \\
\hline \multicolumn{2}{|l|}{Structure} & \multicolumn{13}{|c|}{Fully enclosed, self-cooling (Protective degree: IP65, IP67)} \\
\hline \multirow{5}{*}{Environment} & Ambien
t
temper \(\quad\left[{ }^{\circ} \mathrm{C}\right]\) & \multicolumn{13}{|c|}{Operation: 0 to \(55^{\circ} \mathrm{C}\) (non freezing), Storage/transportation: -15 to \(70^{\circ} \mathrm{C}\) (non freezing)} \\
\hline & \[
\begin{aligned}
& \text { Ambient } \\
& \text { humidity }
\end{aligned} \text { [\%RH] }
\] & \multicolumn{13}{|c|}{\begin{tabular}{l}
Operation: \(90 \%\) RH or less (non condensing), \\
Storage/transportation: \(90 \%\) RH or less (non condensing)
\end{tabular}} \\
\hline & Atmosphere & \multicolumn{13}{|c|}{Indoors (no direct sunlight); no corrosive gas, inflammable gas, oil mist, or dust} \\
\hline & \begin{tabular}{|l|}
\hline \begin{tabular}{l}
Eleva- \\
tion
\end{tabular}\(\quad\) [m] \\
\hline
\end{tabular} & \multicolumn{13}{|c|}{Operation/storage: 1000 meters or less above sea level,
Transportation: 10000 meters or less above sea level} \\
\hline & \[
\begin{aligned}
& \text { Vibration/[m/s }{ }^{2} \\
& \text { Impact } \quad]
\end{aligned}
\] & \multicolumn{13}{|c|}{\(4.9 \mathrm{~m} / \mathrm{s}^{2}(0.5 \mathrm{G}) / 49 \mathrm{~m} / \mathrm{s}^{2}(5 \mathrm{G})\)} \\
\hline \multicolumn{2}{|l|}{Cooling type} & \multicolumn{9}{|c|}{Self-cooling} & \multicolumn{4}{|c|}{Forced air cooling} \\
\hline \multicolumn{2}{|l|}{Weight [kg]} & \multicolumn{9}{|c|}{2.3} & \multicolumn{2}{|r|}{4.5} & & 5.2 \\
\hline \multicolumn{2}{|l|}{\[
\begin{aligned}
& \hline \text { Maximum } \\
& \text { heating value }
\end{aligned} \quad[\mathrm{W}]
\]} & 38 & 41 & 43 & 46 & 52 & 62 & 68 & 78 & 96 & 155 & 178 & \multicolumn{2}{|l|}{190} \\
\hline \multicolumn{2}{|l|}{Noise} & \multicolumn{13}{|c|}{Less than 55dB} \\
\hline
\end{tabular}
(Note 1) The same capacity drive units with a smaller width are indicated with an " S " at the end of the type. Note that limits will apply to continuous operation.

(Note 1) The same capacity drive units with a smaller width are indicated with an " S " at the end of the type. Note that limits will apply to continuous operation.
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{Unit} & \multicolumn{24}{|l|}{2-axis drive unit model name} \\
\hline & & \multicolumn{24}{|l|}{mDS-C1-} \\
\hline & & V2-0101 & \multicolumn{2}{|l|}{V2-0301} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { V2-0303 } \\
\hline \text { LM } \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{V2-0501} & \multicolumn{2}{|l|}{V2-0503} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { V2-0505 } \\
\hline \text { LM } \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{V2-1005} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \text { V2-1010 } \\
\hline \text { LM } \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{V2-2010} & \multirow[t]{2}{*}{\[
\begin{array}{|c|}
\hline \mathrm{V} 2-2020 \\
\hline \text { LM } \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{V2-3510} & \multicolumn{2}{|l|}{V2-3510S} & \multicolumn{2}{|l|}{V2-3520} & \multicolumn{2}{|l|}{V2-3520S} & \multirow[t]{2}{*}{\begin{tabular}{|c|}
\hline V2-3535 \\
\hline LM \\
\hline
\end{tabular}} \\
\hline & & LM & L & M & & L & M & L & M & & L & M & & L & M & & L & M & L & M & L & M & L & M & \\
\hline Applicable motor & & \[
\left|\begin{array}{c}
\text { HAO53N } \\
\text { HA13N }
\end{array}\right|
\] & \[
\begin{aligned}
& \text { HA23N } \\
& \text { HA33N }
\end{aligned}
\] & \[
\begin{gathered}
\text { HA053 } \\
\text { HA13 }
\end{gathered}
\] & HA23N
НАЗЗN & \[
\begin{array}{|c|}
\hline \text { HC52 } \\
\text { HC53 } \\
\text { HA5ONL } \\
\text { (HAAON } \\
\text { (HA43N) }
\end{array}
\] & \[
\begin{aligned}
& \text { HA053 } \\
& \text { HA13 }
\end{aligned}
\] & \[
\left.\begin{array}{|c|}
\text { HC52 } \\
\text { HC53 } \\
\text { HA5ONL } \\
\text { (HAOAN) } \\
\text { (HA43N) }
\end{array} \right\rvert\,
\] & HA23N HA33N & \[
\left.\begin{array}{|c|}
\hline \text { HC52 } \\
\text { HC53 } \\
\text { HA50NL } \\
\text { (HA40N) } \\
\text { (HA43N) }
\end{array} \right\rvert\,
\] & \[
\begin{array}{|c|}
\text { HC102 } \\
\text { HC103 } \\
\text { HA100NL } \\
\text { HA53NL } \\
\text { (HA80N) } \\
\text { (HA83N) } \\
\text { (HC103R) } \\
\text { (HC153R) }
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { HC52 } \\
\text { HC53 } \\
\text { HA5ONL } \\
\text { (HA40N) } \\
\text { (HA43N) }
\end{array}
\] & HC 102
HC 103
HA10NL
HA53NL
(HA8ON)
(HABNN)
(HC103R
(HC153R & HC152
HC202
HC153
HA150NL
HA200N
HA103NL
HA153NL
HAAOON
(HC203R & \[
\begin{array}{|c|}
\text { HC102 } \\
\text { HC103 } \\
\text { HA100NL } \\
\text { HA53NL } \\
\text { (HA80N) } \\
\text { (HA83N) } \\
\text { (HC103R) } \\
\text { (HC153R) }
\end{array}
\] & \[
\begin{array}{|c|}
\hline \text { HC 152 } \\
\text { HC202 } \\
\text { HC 153 } \\
\text { HA150N } \\
\text { HA200N } \\
\text { HA103N } \\
\text { HA153NL } \\
\text { HAA100N }
\end{array}
\] & \[
\begin{array}{|}
\text { HC352 } \\
\text { HC203 } \\
\text { HA30N } \\
\text { HA203NL } \\
\text { HARAOON } \\
(\text { HA103N } \\
(\text { HC353R }
\end{array}
\] & HC102
HC103
HA100NL
HA53N
(HA80N)
(HAB3N)
(HC103R
(HC153R & \[
\begin{gathered}
\text { HC352 } \\
\text { HC203 } \\
\text { HA30NL } \\
\text { HA203NL } \\
\text { (HA200N } \\
\text { (HA103N } \\
\text { (HC353R }
\end{gathered}
\] & \[
\begin{array}{|c}
\text { HC102 } \\
\text { HC103 } \\
\text { HA10NL } \\
\text { HA53NL } \\
\text { HA8NO) } \\
(H A 83 N) \\
(H C 103 R \\
(H C 153 R
\end{array}
\] & \[
\begin{array}{|c|}
\text { HC352 } \\
\text { HC203 } \\
\text { HA30N } \\
\text { HA203N } \\
\text { HAR20N } \\
\text { HHA103N } \\
\text { (HC353R } \\
\text { (HC }
\end{array}
\] & HC152
HC202
HC 153
HA150NL
HA200N
HAA 103 L
HA153NL
HA100N
HC203R
H & \[
\begin{gathered}
\text { HC352 } \\
\text { HC203 } \\
\text { HA300NL } \\
\text { HA203NL } \\
\text { (HA200N } \\
\text { (HA103N } \\
\text { (HC353R }
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \text { HC152 } \\
\text { HC202 } \\
\text { HC153 } \\
\text { HA150N } \\
\text { HA200N } \\
\text { HA20N } \\
\text { HA103N } \\
\text { HA153N } \\
\text { HAAONN } \\
\text { (HC203R } \\
\hline
\end{array}
\] & (en \(\begin{gathered}\text { HC352 } \\ \text { HC203 } \\ \text { HA300N } \\ \text { HA203N } \\ \text { (HA200N } \\ \text { (HA103N } \\ \text { (HC353R }\end{gathered}\) \\
\hline Output voltage & V & \multicolumn{24}{|l|}{155 V} \\
\hline Rated output current & A & 0.95 & 2.9 & 0.95 & 2.9 & 3.4 & 0.95 & 3.4 & 2.9 & 3.4 & 6.8 & 3.4 & 6.8 & 13 & 6.8 & 13 & 16 & 6.8 & 16 & 6.8 & 16 & 13 & 16 & 13 & 16 \\
\hline Continuous output current & A & 1.4 & 3.0 & 1.4 & 3.0 & 5.0 & 1.4 & 5.0 & 3.0 & 5.0 & 8.8 & 5.0 & 8.8 & 18.2 & 8.8 & 18.2 & 25 & 8.8 & 25 & 8.8 & 25 & 18.2 & 25 & 18.2 & 25 \\
\hline \[
\begin{aligned}
& \begin{array}{l}
\text { Maximum output } \\
\text { current }
\end{array} \\
& \hline
\end{aligned}
\] & A & 3.9 & 8.1 & 3.9 & 8.1 & 17 & 3.9 & 17 & 8.1 & 17 & 28 & 17 & 28 & 42 & 28 & 42 & 57 & 28 & 57 & 28 & 57 & 42 & 57 & 42 & 57 \\
\hline Maximum output torque (During combination with motor) Refer to "5.3 Servo drive specifications" for the applicable motor. & N.m & \[
\begin{aligned}
& 0.68 \\
& 1.37
\end{aligned}
\] & \[
\begin{aligned}
& 2.74 \\
& 5.59
\end{aligned}
\] & \[
\begin{aligned}
& 0.68 \\
& 1.37
\end{aligned}
\] & \[
\begin{aligned}
& 2.74 \\
& 5.59
\end{aligned}
\] & \[
\begin{array}{r}
11.8 \\
8.82 \\
13.0 \\
(14.2) \\
(10.2)
\end{array}
\] & \[
\begin{aligned}
& 0.68 \\
& 1.37
\end{aligned}
\] & \[
\begin{array}{r}
11.8 \\
8.82 \\
13.0 \\
(14.2) \\
(10.2)
\end{array}
\] & \[
\begin{aligned}
& 2.74 \\
& 5.59
\end{aligned}
\] & \[
\begin{array}{r}
11.8 \\
8.82 \\
13.0 \\
(14.2) \\
(10.2)
\end{array}
\] & \[
\begin{array}{r}
21.6 \\
16.7 \\
20.8 \\
14.2 \\
(25.4) \\
(79.2) \\
(7.95) \\
(11.9)
\end{array}
\] & \[
\begin{array}{r}
11.8 \\
8.82 \\
13.0 \\
(14.2) \\
(10.2)
\end{array}
\] & \[
\begin{array}{r}
21.6 \\
16.7 \\
20.8 \\
14.2 \\
(25.4) \\
(19.2) \\
(7.95) \\
(11.9)
\end{array}
\] & \begin{tabular}{l}
35.3 \\
41.7 \\
28.4 \\
31.3 \\
31.6 \\
22.4 \\
22.8 \\
(41.9) \\
(15.9)
\end{tabular} & \[
\begin{gathered}
21.6 \\
16.7 \\
20.8 \\
14.1 \\
(25.4) \\
(99.2) \\
(7.95) \\
(11.9)
\end{gathered}
\] & \[
\begin{aligned}
& 35.3 \\
& 41.7 \\
& 28.4 \\
& 31.3 \\
& 31.6 \\
& 22.4 \\
& 22.8 \\
& (41.9)
\end{aligned}
\] & \[
\begin{array}{r}
59.8 \\
40.2 \\
51.9 \\
37.0 \\
(59.8) \\
(40.2) \\
(27.8)
\end{array}
\] & \[
\begin{aligned}
& 21.6 \\
& 16.7 \\
& 20.8 \\
& 14.1 \\
& (25.4) \\
& (99.2) \\
& (7.95) \\
& (11.9)
\end{aligned}
\] & \[
\begin{array}{r}
59.8 \\
40.2 \\
51.9 \\
37.0 \\
(59.8) \\
(40.2) \\
(27.8)
\end{array}
\] & \[
\begin{array}{r}
21.6 \\
16.7 \\
20.8 \\
14.1 \\
(25.4) \\
(79.2) \\
(7.95) \\
(11.9)
\end{array}
\] & \[
\begin{array}{r}
59.8 \\
40.2 \\
51.9 \\
37.0 \\
(59.8) \\
(40.2) \\
(27.8)
\end{array}
\] & \[
\begin{aligned}
& 35.3 \\
& 41.7 \\
& 28.4 \\
& 31.3 \\
& 31.6 \\
& 22.4 \\
& 22.8 \\
& (41.9) \\
& (15.9)
\end{aligned}
\] & \[
\begin{array}{r}
59.8 \\
40.2 \\
51.9 \\
37.0 \\
(59.8) \\
(40.2) \\
(27.8)
\end{array}
\] & \begin{tabular}{l}
35.3 \\
41.7 \\
28.4 \\
31.3 \\
31.6 \\
22.4 \\
22.8 \\
(41.9) \\
(15.9)
\end{tabular} & \[
\begin{array}{r}
59.8 \\
40.2 \\
51.9 \\
37.0 \\
(59.8) \\
(40.2) \\
(27.8)
\end{array}
\] \\
\hline
\end{tabular}

\subsection*{6.3 Hardware setting}

\begin{tabular}{|c|c|c|}
\hline Function & Setting & Meaning \\
\hline \multirow{5}{*}{\begin{tabular}{c}
Axis No. setting \\
CS
\end{tabular}} & 0 & 1st axis \\
\cline { 2 - 3 } & 1 & 2 \\
\cline { 2 - 3 } & 2 & 3 \\
\cline { 2 - 3 } & 4 & 4 \\
\cline { 2 - 3 } & 5 & 5 \\
\cline { 2 - 3 } & 6 & 7 \\
\cline { 2 - 3 } & \(7 \sim \mathrm{E}\) & Not usable \\
\cline { 2 - 3 } & F & \begin{tabular}{c}
Not used axis \\
selection
\end{tabular} \\
\hline
\end{tabular}

The servo drive axis No. can be set by opening the upper lid (at the right of the LED status display window) on the top of the MDS-C1-V2 servo drive unit, and turning the rotary switch. When the rotary switch is set to "F" and the servo drive power is turned on, that axis will not be controlled. Thus, set axes that are not being used to "F". (The communication with the NC will not take place during initialization, and an alarm will not occur.)

\subsection*{6.4 Status display}

\section*{WARNING}
1. Do not operate the switches with wet hands. Failure to observe this could lead to electric shocks.
2. Do not operate the unit with the front cover removed. The high voltage terminals and charged sections will be exposed, and could lead to electric shocks.
3. Do not open the front cover while the power is ON or during operation. Failure to observe this could lead to electric shocks.

\section*{CAUTION}
1. Check and adjust each program and parameter before starting operation. Failure to do so could lead to unforeseen operation of the machine.
2. Do not touch the fin on the servo drive unit, regenerative resistor or servomotor, etc., while the power is turned ON or immediately after turning the power OFF. These parts may reach high temperatures, and can cause burns.

The state is displayed on the servo drive display with codes and the data is transferred to the NC side.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Display } & \multicolumn{1}{|c|}{ Status } & \multicolumn{1}{c|}{ Description } \\
\hline AA & INITIALIZE & Waiting for NC power start up (NC power ON \(\rightarrow\) OFF). \\
\hline Ab & INITIALIZE & \begin{tabular}{l}
Waiting for NC power start up \\
(When the drive unit power is turned OFF and ON and the NC power is \\
OFF)
\end{tabular} \\
\hline AC & INITIALIZE & Requesting parameter transfer \\
\hline Ad & INITIALIZE & Waiting for parameter transfer \\
\hline AE & INITIALIZE & Waiting for main servo IT start \\
\hline & & \\
\hline b\# & READY OFF & Ready OFF \\
\hline c\# & SERVO OFF & Servo OFF \\
\hline d\# & SERVO ON & Servo ON \\
\hline F\# \(\rightarrow 9 *\) & WARNING & Warning being generated \\
\hline F\# \(\rightarrow\) E* & WARNING & Warning being generated \\
\hline F\# \(\rightarrow * *\) & ALARM & Alarm being generated \\
\hline
\end{tabular}

\section*{\# : Axis number}
* : Warning number
** : Alarm number (Refer to servo alarm and warning)

Examples of MDS-C1-V2 drive unit status displays
We will assume that the \(L\)-axis is the 1 st axis and the \(M\)-axis is the \(2 n d\) axis.
(Example 1) Display when both L -axis and M -axis are in servo ON state.

(Example 2) Display when both L -axis and M -axis are in emergency stop state.

(Example 3) Display when the MOTOR OVERHEAT ALARM (46) occurred in the L-axis.
The alarm flickers.

(Example 4) State when the M-axis changeover rotary switch is set to "F" and the MOTOR OVERHEAT ALARM (46) occurred in the L-axis.

The alarm flickers.

(Example 5) Display when M-axis is set to " F " and the L -axis is in the servo ON state.

\subsection*{6.5 Explanation of terminal block and connectors}
\begin{tabular}{|c|c|c|c|c|}
\hline & & Name & Application & Remarks \\
\hline \multicolumn{2}{|l|}{Connector} & \begin{tabular}{l}
CN1A \\
CN1B \\
CN9 \\
CN4 \\
CN2L \\
CN3L \\
CN2M \\
CN3M \\
CN2O
\end{tabular} & \begin{tabular}{l}
For connection with NC and high-order axis \\
For connection with battery unit and low-order axis \\
For maintenance (not used normally) \\
For connection with power supply unit \\
For connection with L-axis motor end detector \\
For connection with L -axis machine end detector \\
For connection with M -axis motor end detector \\
For connection with M-axis machine end detector \\
External brake output contact point
\end{tabular} & \\
\hline \multirow[b]{3}{*}{Terminal block} & TE2 & \[
\begin{aligned}
& \hline \mathrm{L}+ \\
& \mathrm{L}- \\
& \hline
\end{aligned}
\] & Converter voltage input (+) Converter voltage input (-) & \\
\hline & TE3 & \[
\begin{aligned}
& \mathrm{L} 11 \\
& \mathrm{~L} 21 \\
& \hline
\end{aligned}
\] & 200VAC single-phase input & \\
\hline & TE1 & \begin{tabular}{l}
MU \\
MV \\
MW \\
LU \\
LV \\
LW \\
탕
\end{tabular} & U-phase output for M-axis motor drive V-phase output for M-axis motor drive W-phase output for M-axis motor drive U-phase output for L-axis motor drive V-phase output for L-axis motor drive W-phase output for L-axis motor drive Ground & \\
\hline
\end{tabular}

\subsection*{6.6 Main circuit connection}

\section*{\! WARNING}

Ground the servo drive unit and servomotor with Class C(former class 3) grounding or higher.

\section*{. CAUTION}
1. Correctly connect the output side (terminals \(\mathrm{U}, \mathrm{V}, \mathrm{W}\)). Failure to do so could lead to abnormal operation of the servomotor.
2. Do not apply a voltage other than that specified in Instruction Manual on each terminal. Failure to observe this item could lead to ruptures or damage, etc.

\section*{Precautions for connections}
(1) The wires and crimp terminals will differ according to the capacity.
(Refer to "8.5 Selection of wire size in the Chapter I Servo/Spindle System Configuration Section".)
(2) Always ground the power supply.
(3) The phase order of the power supply unit's power supply terminals L1, L2, L3 is random.
(4) Precautions for connecting servo drive terminals \(\mathrm{U}, \mathrm{V}, \mathrm{W}\)
a. Always observe the phase order for the servo drive terminals \(U, V, W\) and motor side pins \(A, B, C\). The motor may vibrate and rotate suddenly if the phase order is mistaken. The phases cannot be reversed for reverse rotation.
b. Never perform connections that might apply the power on the servo drive output terminals \(\mathrm{U}, \mathrm{V}, \mathrm{W}\). The servo drive may be damaged.
c. Never ground the servo drive output terminals \(\mathrm{U}, \mathrm{V}, \mathrm{W}\) or connect so that grounding may occur. The servo drive may be damaged.
d. Do not reverse the connections for the servo drive output terminals L-axis (LU, LV, LW) and M-axis (MU, MV, MW). Make sure that the following is established: L-axis motor capacity \(\geq \mathrm{M}\)-axis motor capacity.
(5) The Cannon plug used will differ according to the motor. Refer to section "2.9 (3)" for the connection drawing of the brake exciter circuit for motor with electromagnetic brake. Refer to section "2.8 (2)" for the terminal box type motor.
(6) Refer to the "I. Servo/Spindle System Configuration Section" for the selection of the contactor, AC reactor and Circuit Breaker connected to the power supply.
(7) Make sure that the specified power is supplied to the servo drive power terminals (L1, L2, L3). If the power does not have the specified voltage, use a transformer.
(8) Do not directly apply commercial power on the motor.
(9) Check once again that the wires are connected correctly as indicated in the wiring diagram.
7. Selection of Capacity III-170
7.1 Selection of servo system III-170
7.1.1 Types of drive systems III-170
7.1.2 Selection of servomotor III-171
7.2 Determining the coasting amount with emergency stop III-182

\section*{7. Selection of Capacity}

\subsection*{7.1 Selection of servo system}

\subsection*{7.1.1 Types of drive systems}

Examples of the drive system format are shown below.
Types of motion directions
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|c|}{Linear} & \multirow[t]{2}{*}{3. Rotating} \\
\hline 1. Horizontal & 2. Vertical & \\
\hline & & \\
\hline
\end{tabular}

Type of drive systems
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Drive systems} & 1. Ball screw (direct connection) & 2. Ball screw (gear linkage) & 3. Rack and pinion \\
\hline & & & \\
\hline Moving amount per motor rotation & \(\wedge S=P_{B}\) & \(\Lambda S=P_{B} \cdot \frac{Z_{1}}{Z_{2}}=P_{B} \cdot \frac{1}{n}\) & \(\wedge S=P_{L} \cdot Z \cdot \frac{1}{n}\) \\
\hline \multirow[b]{2}{*}{Drive systems} & 4. Roll feed & 5. Chain drive (direct connection) & 6. Chain and timing belt drive \\
\hline & & & \\
\hline Moving amount per motor rotation & \(\wedge S=\pi \cdot D \cdot \frac{1}{n}\) & \(\wedge S=P_{c} \cdot Z \cdot \frac{1}{n}\) & \[
\wedge S=P_{r} \cdot Z \cdot \frac{Z_{1}}{Z_{2}}=P_{r} \cdot Z \cdot \frac{1}{n}
\] \\
\hline
\end{tabular}

\section*{7. Selection of Capacity}

\subsection*{7.1.2 Selection of servomotor}

Select a motor that satisfies the following five items so that the performance of the AC servo system can be brought out to the fullest.

\section*{(1) Maximum speed}

The motor speed during rapid traverse must be within the motor's maximum speed.
Nmax \(\geq \mathrm{N} \quad\) Nmax : Motor maximum speed

If the drive system is the gear linkage ball screw, calculate the motor speed with the following equation, and confirm that the calculated value is less than the motor's maximum speed. Note that the maximum speed may be restricted by the detector.
\begin{tabular}{|c|c|}
\hline Configuration on machine side & Calculation equation \\
\hline & \begin{tabular}{l}
\[
\mathrm{N}=\frac{\mathrm{F}_{\mathrm{GO}}}{\mathrm{P}_{\mathrm{B}}} \times \mathrm{n} \leq \mathrm{N} \max
\] \\
Nmax : Motor maximum speed (r/min) \\
\(\mathrm{N} \quad\) : Motor speed (\(\mathrm{r} / \mathrm{min}\)) \\
\(\mathrm{F}_{\mathrm{GO}}\) : Rapid traverse rate (\(\mathrm{mm} / \mathrm{min}\)) \\
\(P_{B} \quad:\) Feed screw pitch (mm/rev) \\
\(\mathrm{n} \quad\) : Drive gear ratio \\
\(Z_{1} \quad\) : Number of gear teeth on motor shaft \\
\(Z_{2} \quad\) : Number of gear teeth on feed screw shaft
\[
\mathrm{n}: \frac{\text { Motor speed }}{\text { Feed screw speed }}=\frac{\mathrm{Z}_{2}}{\mathrm{Z}_{1}}
\]
\end{tabular} \\
\hline
\end{tabular}

\section*{(2) Motor shaft conversion load inertia}

The load inertia should be within 2.5 times the motor inertia. Use is possible if it exceeds 2.5 times, but the servo adjustment range will be reduced, and the time constants must be increased.
\[
J_{M} \times 2.5 \geq J_{L}
\]
\(J_{\mathrm{L}} \quad:\) Maximum load inertia (motor shaft conversion) \(\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]\)
\(\mathrm{J}_{\mathrm{M}} \quad:\) Motor inertia \(\left[\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right]\)
\(J_{M} \quad:\) Find the motor inertia from the motor data sheet. When using the brakes, add the brake inertia.
\(J_{\mathrm{L}} \quad\) : Obtain the maximum load inertia with the following equation. The example shows the ball screw drive system.
\begin{tabular}{|c|c|c|}
\hline Item & Configuration on machine side & Calculation equation \\
\hline Load inertia of substance linearly moved (Motor shaft conversion) & & \begin{tabular}{l}
\[
\begin{aligned}
J_{L} & =W \cdot\left[\frac{10 \mathrm{~V}}{60 \omega}\right]^{2}=W \cdot\left[\frac{10 \mathrm{~V}}{2 \pi N}\right]^{2} \\
& =W \cdot\left[\frac{P}{2 \pi \times 10}\right]^{2}
\end{aligned}
\] \\
where \\
\(J_{\mathrm{L}}\) : Load inertia \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
V : Speed of substance linearly moved (\(\mathrm{mm} / \mathrm{min}\)) \\
\(\omega\) : Angular speed of motor (rad/s) \\
N : Motor speed (\(\mathrm{r} / \mathrm{min}\)) \\
P : Moving amount of substance linearly moved per motor rotation (mm) \\
W : Mass of substance linearly moved (kg)
\end{tabular} \\
\hline Example of calculating load inertia & & \begin{tabular}{l}
\[
\begin{aligned}
J_{L}= & J_{1}+\left[\frac{Z_{1}}{Z_{2}}\right]^{2}\left(J_{2}+J_{B}+J_{W}\right) \\
= & J_{1}+\left[\frac{Z_{1}}{Z_{2}}\right]^{2}\left\{J_{2}+J_{B}+\right. \\
& \left.W \cdot\left[\frac{P_{B}}{2 \pi \times 10}\right]^{2}\right\}
\end{aligned}
\] \\
where \\
\(J_{\mathrm{L}}\) : Load inertia \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
\(\mathrm{J}_{1}:\) Pinion inertia \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
\(J_{2}\) : Gear inertia \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
\(J_{B}\) : Ball screw inertial \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
\(J_{w}\) : Inertia adjacent to ball screw on table \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
\(P_{B}\) : Ball screw pitch (mm) \\
W : Table mass (kg) \\
\(Z_{1}\) : Number of gear teeth on motor shaft \\
\(Z_{2}\) : Number of gear teeth on feed screw shaft
\end{tabular} \\
\hline
\end{tabular}

\section*{(3) Acceleration/deceleration torque}

The acceleration/deceleration torque should be within \(80 \%\) of the driver unit's maximum output torque. The following calculation equation is used for the acceleration/deceleration torque regardless of the index acceleration or linear acceleration.
\[
T_{A} \max \times 0.8 \geq \frac{2 \pi \mathrm{~N}\left(\mathrm{~J}_{\mathrm{L}}+\mathrm{J}_{M}\right) \times 10^{-4}}{60 \mathrm{~T}_{\mathrm{S}}}+\mathrm{T}_{F}
\]
\(\mathrm{N} \quad: \quad\) Motor speed during rapid traverse [r/min]
\(\mathrm{T}_{\mathrm{S}} \quad:\) Acceleration/deceleration time constant during rapid traverse [s]
\(\mathrm{T}_{\mathrm{F}} \quad: \quad\) Motor conversion load torque during rapid traverse \([\mathrm{N} \cdot \mathrm{m}\)]
\(T_{A} \max\) : Driver unit maximum output torque (when used in combination with motor) [\(\mathrm{N} \cdot \mathrm{m}\)]
\(\mathrm{T}_{\mathrm{A}} \max\) : Find the driver unit maximum output torque from the servo drive unit specifications.

\section*{(4) Continuous effective load torque}

The continuous effective load torque should be within \(80 \%\) of the motor rated torque (during normal stall).
\[
\mathrm{T}_{\mathrm{MS}} \times 0.8 \geq \mathrm{Trms}
\]
\(\mathrm{T}_{\text {MS }} \quad: \quad\) Motor rated torque \([\mathrm{N} \cdot \mathrm{m}\)]
Trms : Continuous effective load torque [\(\mathrm{N} \cdot \mathrm{m}\)]
The continuous effective load torque is calculated as shown below from the machine's operation pattern.
\begin{tabular}{|c|c|}
\hline Operation pattern & Calculation equation \\
\hline & \begin{tabular}{l}
\[
\text { Trms }=\sqrt{\frac{X}{\text { to }}}
\]
\[
\begin{aligned}
X= & (T a+T f)^{2} t_{1}+T f^{2} t_{2}+(T d-T f)^{2} t_{3} \\
& +T o^{2} t_{4}+(T a c+T f)^{2} t_{5} \\
& +(T c+T f)^{2} t_{6}+T f^{2} t_{7} \\
& +(T d c-T f)^{2} t_{8}+T 0^{2} t_{9}
\end{aligned}
\] \\
where \\
Trms: Continuous effective load torque [\(\mathrm{N} \cdot \mathrm{m}\)] \\
Ta : Acceleration torque \([\mathrm{N} \cdot \mathrm{m}]\) \\
Td : Deceleration torque \([\mathrm{N} \cdot \mathrm{m}]\) \\
Tf : Frictional load torque [\(\mathrm{N} \cdot \mathrm{m}\)] \\
To : Load torque in stop state [\(\mathrm{N} \cdot \mathrm{m}\)] \\
Tac : Acceleration torque in cutting state [\(\mathrm{N} \cdot \mathrm{m}\)] \\
Tdc : Deceleration torque in cutting state [\(\mathrm{N} \cdot \mathrm{m}\)] \\
Tc : Cutting torque \([\mathrm{N} \cdot \mathrm{m}]\)
\end{tabular} \\
\hline
\end{tabular}

However, if the cutting maximum torque and maximum duty (\%) are known, the selection conditions can be found easily with the following equation.
\[
\mathrm{T}_{\mathrm{MS}} \times 0.8 \geq \mathrm{Trms}=\mathrm{Tc} \sqrt{\frac{\mathrm{D}}{100}}
\]
\begin{tabular}{ll}
\(\mathrm{T}_{\text {MS }}\) & \(:\) Motor rated torque \([\mathrm{N} \cdot \mathrm{m}]\) \\
Trms & \(:\) Continuous effective torque \([\mathrm{N} \cdot \mathrm{m}]\) \\
Tc & \(:\) Operational maximum torque \([\mathrm{N} \cdot \mathrm{m}]\) \\
D & \(:\) Maximum duty \([\%]\)
\end{tabular}

\section*{(5) Duty ON time}

The maximum duty ON time should be within the tolerable time listed in the motor data sheet. However, this does not need to be checked if the cutting maximum torque is less than the rated torque of \(100 \%\).
\(\mathrm{T}_{\mathrm{LO},} \leq \mathrm{T}_{\mathrm{MOn}}\)

TLOn : ON time of maximum duty [min] (machine manufacturer specification)
\(\mathrm{T}_{\text {MOn }}:\) ON time of motor tolerable duty [min] (data sheet)

\section*{Example)}

In HA23N, when the maximum cutting torque Tc is 1.37 [\(\mathrm{N} \cdot \mathrm{m}\)] and the duty D is 40 [\%], the ON time of the tolerable duty becomes:

Torque percent \(=\frac{1.37}{0.98}=1.4 \rightarrow 140 \%\)

From the chart, \(\mathrm{T}_{\mathrm{MO}}=5[\mathrm{~min}]\)

Duty percent \(=\frac{t_{1}}{t_{0}} \times 100 \%\)
\[
\mathrm{t}_{1}: \mathrm{ON} \text { time (min) }
\]

HA23/t th \(=20.25 \mathrm{~min}\)

\section*{(6) Unbalance load torque}

The unbalance load torque must be kept to within \(50 \%\) of the motor rated torque (at normal stall).
\[
\begin{array}{cl}
\mathrm{T}_{\mathrm{MS}} \times 0.5 \geq & \mathrm{To} \\
& \\
\mathrm{~T}_{\mathrm{MS}} & : \text { Motor rated torque }[\mathrm{kg} \cdot \mathrm{~cm}] \\
\mathrm{To} & : \\
\text { Unbalance load torque when stopped }
\end{array}
\]

\section*{(7) Example of selection}

When the following data is known for the above drive system:
\begin{tabular}{ll}
Gear ratio & \(\mathrm{N}=3 / 5\) \\
Ball screw pitch & \(\mathrm{P}=10 \mathrm{~mm}\) \\
Rapid traverse rate & \(\mathrm{F}=12000 \mathrm{~mm} / \mathrm{min}\) \\
Table mass & \(\mathrm{W}=170 \mathrm{~kg}\) \\
Ball screw inertia & \(\mathrm{J}_{\mathrm{B}}=7.45 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\) \\
Gear inertia & \(\mathrm{J}_{2}=45.11 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\) \\
Pinion inertia & \(\mathrm{J}_{1}=6.28 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\) \\
Motor shaft conversion torque during rapid traverse & \(\mathrm{T}_{\mathrm{F}}=2.94 \mathrm{~N} \cdot \mathrm{~m}\) \\
Motor shaft conversion torque during maximum cutting & \(\mathrm{T}_{\mathrm{C}}=31.58 \mathrm{~N} \cdot \mathrm{~m}\) \\
Maximum cutting duty & \(\mathrm{D}=20 \%\)
\end{tabular}

The motor maximum speed is :
\[
12000 \times \frac{1}{10} \times \frac{5}{3}=2000 \mathrm{r} / \mathrm{min}
\]

The motor shaft conversion load inertia is:
\[
\left.J_{L}=J_{1}+N^{2} \cdot\left\{J_{2}+J_{B}+W \frac{P}{2 \pi \times 10}\right]^{2}\right\}=180.22 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}
\]

Thus, the motor inertia \(J_{M}\) must satisfy the following:
\[
J_{M} \geq \frac{J_{1}}{2.5}=72.09 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}
\]

From this, HA200N (inertia \(=131.0 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\)) can be selected.
The maximum torque Tmax during acceleration/deceleration is :
\[
\begin{aligned}
\operatorname{Tmax} & =\frac{2 \pi \mathrm{~N}\left(\mathrm{~J}_{L}+\mathrm{J}_{M}\right) \times 10^{-4}}{60 \mathrm{~T}_{\mathrm{S}}}+\mathrm{T}_{\mathrm{F}} \\
& =\frac{6.52}{\mathrm{~T}_{\mathrm{S}}}+2.94
\end{aligned}
\]

The drive unit that corresponds to HA200N is AV1-35, and the drive unit's maximum output torque is \(59.820 \mathrm{~N} \cdot \mathrm{~m}\) (TAmax) as found in the drive unit specifications.

From TAmax \(\times 0.8 \geq\) Tmax :
\[
47.86 \geq \frac{6.52}{T_{s}}+2.94
\]

Therefore, \(\mathrm{Ts} \geq 145 \mathrm{~ms}\)
Thus, the rapid traverse acceleration/deceleration time constant is 150 ms :
The continuous effective load torque Trms is :
\[
\begin{aligned}
\text { Trms } & =T c \sqrt{\frac{D}{100}} \\
& =31.58 \sqrt{\frac{20}{100}} \\
& =14.12
\end{aligned}
\]

The rated torque \(\mathrm{T}_{\text {MS }}\) for HA200N is \(22.6 \mathrm{~N} \cdot \mathrm{~m}\).
So the \(T_{M S} \times 0.8 \geq\) Trms conditions are satisfied.
The maximum cutting torque \(\mathrm{Tc}(31.58 \mathrm{~N} \cdot \mathrm{~m})\) is \(140 \%\) of the rated torque \((22.6 \mathrm{~N} \cdot \mathrm{~m})\), so the duty cycle ON time is 40 minutes or longer from the HA200N characteristic graph.
Thus, it can be seen that the V1-35 and motor HA200N are compatible.

\section*{(8) Reference}
1. Calculation of load inertia
\begin{tabular}{|c|c|c|}
\hline Item & Configuration on machine side & Calculation equation \\
\hline Cylinder load inertia & & \begin{tabular}{l}
\[
\begin{aligned}
J_{L} & =\frac{\pi \cdot \rho \cdot L}{32}\left(D_{1}{ }^{4}-D_{2}{ }^{4}\right) \\
& =\frac{W}{8}\left(D_{1}{ }^{2}+D_{2}{ }^{2}\right)
\end{aligned}
\] \\
where \\
\(J_{L}:\) Load inertia \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
\(\rho\) : Specific gravity \(\left(\mathrm{kg} / \mathrm{m}^{3}\right)\) \\
L : Length of cylinder (cm) \\
\(\mathrm{D}_{1}\) : Outer diameter of cylinder (cm) \\
\(\mathrm{D}_{2}\) : Inner diameter of cylinder (cm) \\
W : Mass (kg) \\
Specific gravities of materials \\
Steel \(\quad: 7.8 \times 10^{-3} \mathrm{~kg} / \mathrm{cm}^{3}\) \\
Aluminum : \(2.7 \times 10^{-3} \mathrm{~kg} / \mathrm{cm}^{3}\) \\
Copper \(\quad: 8.96 \times 10^{-3} \mathrm{~kg} / \mathrm{cm}^{3}\)
\end{tabular} \\
\hline
\end{tabular}

Although the inertia is expressed by inertia moment, or \(\mathrm{GD}^{2}\), their concept is the same. In this chapter, the relation of the moment of inertia and \(\mathrm{GD}^{2}\) is as follows for convenience.

Inertia moment \(\left(\mathrm{J} \mathrm{kg} \cdot \mathrm{m}^{2}\right)=(\) mass kg\() \times(\text { rotation radius } \mathrm{m})^{2}\)
\(\mathrm{GD}^{2}\left(\mathrm{GD}^{2} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)=(\) mass kg\() \times(\text { rotation diameter } \mathrm{m})^{2}\)
Conversion equation of J and \(\mathrm{GD}^{2} \mathrm{~J}=\frac{\mathrm{GD}^{2}}{4}\)
\begin{tabular}{|c|c|c|}
\hline Item & Configuration on machine side & Calculation equation \\
\hline Load inertia of substance linearly moved (Motor shaft conversion) & & \begin{tabular}{l}
\[
\begin{aligned}
J_{L} & =W \cdot\left[\frac{10 \mathrm{~V}}{60 \omega}\right]^{2}=W \cdot\left[\frac{10 \mathrm{~V}}{2 \pi N}\right]^{2} \\
& =W \cdot\left[\frac{\mathrm{P}}{2 \pi \times 10}\right]^{2}
\end{aligned}
\] \\
where \\
\(J_{\mathrm{L}}\) : Load inertia \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
V : Speed of substance linearly moved (mm/min) \\
\(\omega\) : Angular speed of motor (rad/s) \\
N : Motor speed (\(\mathrm{r} / \mathrm{min}\)) \\
P : Moving amount of substance linearly moved per motor rotation (mm) \\
W : Mass of substance linearly moved (kg)
\end{tabular} \\
\hline Load inertia of substance lifted up & & \begin{tabular}{l}
\[
J_{L}=W \cdot R^{2}+J_{P}
\] \\
where \\
\(J_{L}\) : Load inertia \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
\(J_{p}\) : Inertia of pulley \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
R : Radius of pulley (mm) \\
W : Mass of substance linearly moved (kg)
\end{tabular} \\
\hline Load inertia \(\mathrm{J}_{\mathrm{LO}}\) is decelerated (accelerated) and connected to motor shaft & & \begin{tabular}{l}
\[
J_{L}=\left[\frac{Z_{1}}{Z_{2}}\right]^{2} \times J_{L O}
\] \\
where \\
\(J_{L}\) : Load inertia \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) (Motor shaft conversion) \\
\(J_{\text {LO }}\) : Load inertia at rotation center of rotating substance \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
\(Z_{1}\) : Number of gear teeth on motor shaft side \\
\(Z_{2}\) : Number of gear teeth on deceleration (acceleration) side
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Item & Configuration on machine side & Calculation equation \\
\hline Example of calculating load inertia & & \begin{tabular}{l}
\[
\begin{aligned}
J_{L}= & J_{1}+\left[\frac{Z_{1}}{Z_{2}}\right]^{2}\left(J_{2}+J_{B}+J_{W}\right) \\
= & J_{1}+\left[\frac{Z_{1}}{Z_{2}}\right]^{2}\left\{J_{2}+J_{B}+\right. \\
& \left.W \cdot\left[\frac{P_{B}}{2 \pi \times 10}\right]^{2}\right\}
\end{aligned}
\] \\
where \\
\(J_{L}\) : Load inertia \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
\(\mathrm{J}_{1}\) : Pinion inertia \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
\(\mathrm{J}_{2}\) : Gear inertia \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
\(J_{B}\) : Ball screw inertial \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
\(J_{\mathrm{w}}\) : Inertia adjacent to ball screw on table \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\) \\
\(P_{B}\) : Ball screw pitch (mm) \\
W : Table mass (kg) \\
\(Z_{1}\) : Number of gear teeth on motor shaft \\
\(Z_{2}\) : Number of gear teeth on feed screw shaft
\end{tabular} \\
\hline
\end{tabular}
2. Example of load torque calculation
\begin{tabular}{|c|c|c|}
\hline Item & Configuration on machine side & Calculation equation \\
\hline Load torque of machine linearly moved (motor shaft conversion) & & \begin{tabular}{l}
\[
T_{L}=\frac{F \cdot P}{2 \times 10^{3} \cdot \pi \eta}+T_{F}
\] \\
where \\
\(T_{L}\) : Motor shaft conversion load torque (\(\mathrm{N} \cdot \mathrm{m}\)) \\
F : Axial force of machine linearly moved (N) \\
P : Movement of machine per motor rotation (\(\mathrm{mm} / \mathrm{rev}\)) \\
\(\eta\) : Ball screw efficiency \\
\(\mathrm{T}_{\mathrm{F}}\) : Motor shaft conversion frictional load torque (\(\mathrm{N} \cdot \mathrm{m}\))
\end{tabular} \\
\hline & - When a drive gear is used: & \begin{tabular}{l}
\[
T_{L}=\frac{F \cdot P_{B}}{2 \times 10^{3} \pi \eta} \cdot \frac{Z_{1}}{Z_{2}}+T_{F}
\] \\
where \\
\(\mathrm{T}_{\mathrm{L}} \quad\) : Load torque converted into motor shaft (\(\mathrm{N} \cdot \mathrm{m}\)) \\
F : Axial force of machine linearly moved (N) \\
\(P_{B} \quad\) : Ball screw pitch (\(\mathrm{mm} / \mathrm{rev}\)) \\
\(\eta \quad:\) Efficiency of ball screw and drive gear \\
\(Z_{1}, Z_{2}\) : Number of drive gear teeth \\
\(\mathrm{T}_{\mathrm{F}} \quad\) : Load torque converted into motor shaft (\(\mathrm{N} \cdot \mathrm{m}\))
\[
F=F c+\mu(W+N g+F c f)
\] \\
where \\
Fc:Axial component force in cutting state (N) \\
W : Full mass of table (kg) \\
Ng : Gib tightening force on table guide surface (kg) \\
Fcf : Component force perpendicular to shaft in cutting state (back component) (kg) \\
\(\mu\) : Dynamic friction coefficient
\end{tabular} \\
\hline
\end{tabular}

\section*{Precautions for calculating load torque}
(1) The maximum value of the load torque should be selected in the actual machine operation state. When the selected load torque is actually smaller than that used, an overload may occur.
(2) When the machine table is separated from the cutting position, the frictional load torque may be momentarily varied by the cutting force on the table guide surface.

\subsection*{7.2 Determining the coasting amount with emergency stop}

When the system detects an abnormality, the machine's motor is stopped by a dynamic brake. The coasting amount of the machine can be obtained by the following equation.
\[
\operatorname{Lmax}=\frac{\mathrm{F}_{\mathrm{GO}} \times 10^{3}}{60}\left\{0.03+\left(\mathrm{AN}^{2}+\mathrm{B}\right)\left(1+\frac{\mathrm{J}_{\mathrm{L}}}{\mathrm{~J}_{\mathrm{M}}}\right) \times 1.1\right\}
\]
where
Lmax : Coasting amount of machine (mm)
\(\mathrm{F}_{\mathrm{GO}}\) : Feedrate (rapid traverse) (\(\mathrm{m} / \mathrm{min}\))
N : Motor speed (maximum speed) (\(\mathrm{r} / \mathrm{min}\))
A : Coefficient (see the following table)
B : Coefficient (see the following table)
\(J_{\mathrm{L}} \quad\) : Motor shaft conversion load inertia \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\)
\(\mathrm{J}_{\mathrm{M}} \quad:\) Motor shaft rotor inertia \(\left(\times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\)
Note: Lmax deviates for \(\pm 10 \%\) depending on the induced voltage constant.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Motor model} & \multirow[t]{2}{*}{Motor inertia \(\mathrm{J}_{\mathrm{M}} \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\)} & \multicolumn{2}{|c|}{Coefficients} \\
\hline & & A & B \\
\hline HA053 & 0.18 & \(0.13 \times 10^{-9}\) & \(13.18 \times 10^{-3}\) \\
\hline HA13 & 0.36 & \(0.15 \times 10^{-9}\) & \(8.39 \times 10^{-3}\) \\
\hline HA23N & 0.98 & \(0.25 \times 10^{-9}\) & \(6.66 \times 10^{-3}\) \\
\hline HA33N & 1.96 & \(0.39 \times 10^{-9}\) & \(4.28 \times 10^{-3}\) \\
\hline HA40N & 9.8 & \(2.07 \times 10^{-9}\) & \(11.47 \times 10^{-3}\) \\
\hline HA43N & 9.8 & \(1.79 \times 10^{-9}\) & \(13.48 \times 10^{-3}\) \\
\hline HA80N & 19.6 & \(1.77 \times 10^{-9}\) & \(9.73 \times 10^{-3}\) \\
\hline HA83N & 19.6 & \(1.44 \times 10^{-9}\) & \(12.54 \times 10^{-3}\) \\
\hline HA100N & 68.6 & \(4.82 \times 10^{-9}\) & \(16.68 \times 10^{-3}\) \\
\hline HA103N & 68.6 & \(3.87 \times 10^{-9}\) & \(27.72 \times 10^{-3}\) \\
\hline HA200N & 131.0 & \(2.65 \times 10^{-9}\) & \(22.61 \times 10^{-3}\) \\
\hline HA203N & 131.0 & \(1.24 \times 10^{-9}\) & \(49.97 \times 10^{-3}\) \\
\hline HA300N & 192.0 & \(1.71 \times 10^{-9}\) & \(31.05 \times 10^{-3}\) \\
\hline HA700N & 254.0 & \(1.31 \times 10^{-9}\) & \(37.84 \times 10^{-3}\) \\
\hline HA900N & 319.0 & \(1.39 \times 10^{-9}\) & \(44.01 \times 10^{-3}\) \\
\hline HA303N & 192.0 & \(0.68 \times 10^{-9}\) & \(62.16 \times 10^{-3}\) \\
\hline HA703N & 254.0 & \(0.69 \times 10^{-9}\) & \(73.15 \times 10^{-3}\) \\
\hline HA50NL & 2.75 & \(2.31 \times 10^{-9}\) & \(2.56 \times 10^{-3}\) \\
\hline HA100NL & 5.49 & \(2.04 \times 10^{-9}\) & \(2.92 \times 10^{-3}\) \\
\hline HA150NL & 8.24 & \(3.54 \times 10^{-9}\) & \(3.26 \times 10^{-3}\) \\
\hline HA200NL & 19.6 & \(1.90 \times 10^{-9}\) & \(6.56 \times 10^{-3}\) \\
\hline HA300NL & 29.4 & \(1.88 \times 10^{-9}\) & \(6.42 \times 10^{-3}\) \\
\hline HA500NL & 88.3 & \(2.12 \times 10^{-9}\) & \(19.40 \times 10^{-3}\) \\
\hline HA53NL & 2.7 & \(1.57 \times 10^{-9}\) & \(3.17 \times 10^{-3}\) \\
\hline HA103NL & 5.5 & \(1.16 \times 10^{-9}\) & \(3.85 \times 10^{-3}\) \\
\hline HA153NL & 8.2 & \(0.89 \times 10^{-9}\) & \(4.81 \times 10^{-3}\) \\
\hline HA203NL & 19.6 & \(1.17 \times 10^{-9}\) & \(7.46 \times 10^{-3}\) \\
\hline HA303NL & 29.4 & \(1.04 \times 10^{-9}\) & \(9.58 \times 10^{-3}\) \\
\hline HA503NL & 88.3 & \(1.32 \times 10^{-9}\) & \(26.25 \times 10^{-3}\) \\
\hline HA-LH11K2-S1 & 118.0 & \(2.31 \times 10^{-9}\) & \(11.32 \times 10^{-3}\) \\
\hline HA-LH15K2-S1 & 290.0 & \(3.73 \times 10^{-9}\) & \(20.36 \times 10^{-3}\) \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

\section*{IV. MDS-C1-SP}

\section*{Spindle System Section}
1. Outline IV-2
1.1 Features of the MDS-C1-SP spindle system IV-2
1.2 Precautions for use IV-2
1.3 Model configuration IV-3
1.4 Configuration IV-4
1.4.1 Basic configuration (no added functions) IV-4
1.4.2 With orientation function IV-4
1.4.3 High-speed synchronous tap/spindle synchronization/with orientation function IV-6
1.4.4 OSE90K+1024 encoder C-axis control/with orientation function IV-7
1.4.5 OSE90K+1024 encoder C-axis control and high-speed synchronous tap/ spindle synchronization/with orientation function IV-8
1.4.6 MBE90K encoder C -axis control/with orientation function IV-9
1.4.7 MBE90K encoder C-axis control and high-speed synchronous tap/ spindle synchronization/with orientation function IV-9
1.4.8 MHE90K encoder C -axis control/with orientation function IV-10
1.4.9 MHE90K encoder C-axis control and high-speed synchronous tap/ spindle synchronization/with orientation function IV-10
1.5 Device-to-device connections IV-11

\section*{1. Outline}

\subsection*{1.1 Features of the MDS-C1-SP spindle system}
(1) The converter that was conventionally built into the spindle controller has been installed in the unit (MDS-C1-SP), and can be used commonly with the other axis drive units.
This allows great reductions in size and weight.
(2) The speed response has been improved by using a high-speed CPU, and the cutting performance and cutting precision during positioning control has been improved.
(3) A high-speed orientation method that allows direct orientation from high-speeds has been incorporated allowing smooth operations and minimum orientation times.
(4) All spindle parameters can be set from the NC CRT screen thus enhancing the operability.

\subsection*{1.2 Precautions for use}
(1) The motor rated output is guaranteed with the controller rated input voltage (200/220/230VAC). The rated output may not be achieved if the input voltage fluctuates and drops to 200VAC or less.
(2) A harmonic chopper voltage that is PWM controlled is applied on the motor so a harmonic leakage current will flow during motor operation.
If a general-purpose leakage breaker is used, the operation may malfunction due to this harmonic, so use a leakage breaker for inverters. (Refer to the Maintenance Manual BNP-B2046 for details.)
(3) A harmonic leakage current will also flow to the grounding wire between the motor and controller, and if this grounding wire is placed near the NC CRT screen, the CRT screen may malfunction due to the magnetic field of the leakage current.
Separate the grounding wire and NC CRT screen as far as possible.
(4) Noise may occur in AM radio broadcasts due to the electromagnetic wave noise generated from the motor and controller.
Separate radios and the motor and controller as far as possible.
A filter for radio noise measures is available as an option, so use one if necessary.

\subsection*{1.3 Model configuration}
\begin{tabular}{|c|c|}
\hline Motor & \\
\hline Control-I er & \\
\hline
\end{tabular}

\subsection*{1.4 Configuration}

\subsection*{1.4.1 Basic configuration (no added functions)}

\subsection*{1.4.2 With orientation function}
(1) Magnetic sensor orientation (1-point) specifications

(2) Encoder orientation (4096-point) specifications/with index function

(3) Z-phase motor built-in encoder orientation (4096-point) specifications/with index function

(Note) Multipoint orientation using the Z-phase motor built-in encoder is applicable only when spindle to motor shaft speed ratio is \(1: 1\).
(4) Magnetic sensor orientation (1-point) specifications + motor speed feedback output (for spindle speed indication and synchronous speed signal)

(Note) The No. of pulses output to NC will differ according to the speed ratio between the spindle and motor shaft.

\subsection*{1.4.3 High-speed synchronous tap/spindle synchronization/with orientation function}
(1) Motor built-in encoder high-speed synchronous tap/spindle synchronization and magnetic sensor orientation (1-point) specifications

(2) Encoder high-speed synchronous tap/spindle synchronization and orientation (4096-point) specifications/with index function

(3) Z-phase motor built-in encoder high-speed synchronous tap/spindle synchronization and orientation (4096-point) specifications/with index function

\subsection*{1.4.4 OSE90K+1024 encoder C-axis control/with orientation function}
(1) OSE90K+1024 encoder C-axis control and magnetic sensor orientation (1-point) specifications

(2) OSE90K +1024 encoder C-axis control and orientation (4096-point) specifications/with index function

(3) OSE90K +1024 encoder C-axis control and Z-phase motor built-in encoder orientation (4096-point) specifications/with index function

(Note) Multipoint orientation using the Z-phase motor built-in encoder is applicable only when spindle to motor speed ratio

\subsection*{1.4.5 OSE90K+1024 encoder C-axis control and high-speed synchronous tap/spindle synchronization/with orientation function}
(1) OSE90K+1024 encoder C-axis control and high-speed synchronous tap/spindle synchronization and magnetic sensor orientation (1-point) specifications

(2) OSE90K+1024 encoder C-axis control and high-speed synchronous tap/spindle synchronization and magnetic sensor orientation (4096-point) specifications/with index function

(3) OSE90K+1024 encoder C-axis control and high-speed synchronous tap/spindle synchronization and Z-phase motor built-in encoder orientation (4096-point) specifications/with index function

(Note) Multipoint orientation using the Z-phase motor built-in encoder is applicable only when spindle to motor speed ratio is \(1: 1\).

\subsection*{1.4.6 MBE90K encoder C-axis control/with orientation function}
(1) MBE90K encoder C-axis control and orientation (4096-point) specifications/with index function

\subsection*{1.4.7 MBE90K encoder C-axis control and high-speed synchronous tap/} spindle synchronization/with orientation function
(1) MBE90K encoder C-axis control and high-speed synchronous tap/spindle synchronization and orientation (4096-point) specifications/with index function

(Note) Refer to the MBE90K (built-in C-axis encoder) Specifications and Instruction Manual [BNP-A2993-41] for details on the MBE90K wiring.

\subsection*{1.4.8 MHE90K encoder C-axis control/with orientation function}
(1) MHE90K encoder C-axis control and orientation (4096-point) specifications/with index function

\subsection*{1.4.9 MHE90K encoder C-axis control and high-speed synchronous tap/} spindle synchronization/with orientation function
(1) MHE90K encoder C-axis control and high-speed synchronous tap/spindle synchronization and orientation (4096-point) specifications/with index function

(Note) Refer to the MHE90K (built-in C-axis encoder) Specifications and Instruction Manual [BNP-A2993-44] for details on the MHE90K wiring.
* The cable for outputting signals from CN8 to NC and the cable for directly connecting the detector and NC are not necessarily required for "1.4.1" to "1.4.9".
Connect only when required due to the applications. (Spindle speed indication and synchronous speed signal)

\subsection*{1.5 Device-to-device connections}
\begin{tabular}{|l|l|}
\hline \multicolumn{4}{|c|}{ CAUTION } \\
\hline \begin{tabular}{l}
Do not apply a voltage other than that specified in Instruction Manual on each terminal. Failure to observe this item \\
could lead to ruptures or damage, etc.
\end{tabular} \\
\hline
\end{tabular}

2. Specifications IV-14
2.1 AC spindle motor and controller specifications IV-14
2.2 Output characteristics IV-19
2.3 Outline dimension drawings IV-22
2.3.1 Motor IV-22

\section*{2. Specifications}

\subsection*{2.1 AC spindle motor and controller specifications}

(Note 1) The motor rated output is guaranteed with the power supply unit rated input voltage (200/220/230VAC). The rated output may not be achieved if the input voltage fluctuates and drops to 200VAC or less.
(Note 2) Contact Mitsubishi when a rated output range other than \(1: 8\), or \(1: 12\) is required.
(Note 3) The \(50 \%\) ED rating is ON for five minutes and OFF for five minutes in the 10 minute cycle time.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Item Series} & \multicolumn{8}{|c|}{Base speed 1500r/min Series} \\
\hline & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Model}} & \multicolumn{8}{|c|}{SJ-V} \\
\hline & & & 2.2-01 & 3.7-01 & 5.5-01 & 7.5-01 & 11-01 & 15-01 & 18.5-01 & 22-01 \\
\hline & \multirow[t]{2}{*}{} & Cont. rating (HP)/(kW) & 2/1.5 & 3/2.2 & 5/3.7 & 7/5.5 & 10/7.5 & 15/11 & 20/15 & 25/18.5 \\
\hline & & 30 min. rating (HP)/(kW) 50\% ED rating & 3/2.2 & 5/3.7 & 7/5.5 & 10/7.5 & 15/11 & 20/15 & 25/18.5 & 30/22 \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { O} \\
& \text { © } \\
& \text { in }
\end{aligned}
\]} & \multirow[t]{2}{*}{\(\begin{array}{ll}\text { Basic speed } & {[r / m i n]} \\ \text { Max. speed } & {[r / m i n]}\end{array}\)} & \multicolumn{8}{|c|}{1500} \\
\hline & & & \multicolumn{2}{|l|}{10000} & \multicolumn{2}{|c|}{8000} & \multicolumn{4}{|c|}{6000} \\
\hline & \multicolumn{2}{|l|}{Frame No.} & A90 & B90 & D90 & A112 & B112 & A160 & A160 & B160 \\
\hline & Cont & rated torque \(\begin{array}{r}\mathrm{N} \cdot \mathrm{m} \\ {[\mathrm{kg} \cdot \mathrm{m}]}\end{array}\) & \[
\begin{aligned}
& 9.5 / \\
& 0.97
\end{aligned}
\] & \[
\begin{array}{r}
14.0 / \\
1.43
\end{array}
\] & \[
\begin{array}{r}
23.5 / \\
2.40
\end{array}
\] & \[
\begin{array}{r}
35.0 / \\
3.57
\end{array}
\] & \[
\begin{array}{r}
47.71 \\
4.87
\end{array}
\] & \[
\begin{array}{r}
70.0 / \\
7.14
\end{array}
\] & \[
\begin{array}{r}
95.5 / \\
9.74
\end{array}
\] & \[
\begin{array}{r}
118 / \\
12.0
\end{array}
\] \\
\hline & GD \({ }^{2}\) & [kg \(\cdot \mathrm{m}^{2}\)] & 0.027 & 0.035 & 0.059 & 0.098 & 0.12 & 0.23 & 0.23 & 0.32 \\
\hline - & Weig & ht [kg] & 25 & 30 & 49 & 60 & 70 & 110 & 110 & 140 \\
\hline \[
\begin{aligned}
& \text { on } \\
& 0
\end{aligned}
\] & Toler & able radial load [kg] & \multicolumn{2}{|l|}{100} & 150 & \multicolumn{2}{|c|}{200} & \multicolumn{3}{|c|}{300} \\
\hline & \multicolumn{2}{|l|}{Cooling fan [W]} & \multicolumn{3}{|c|}{42} & \multicolumn{2}{|c|}{\(3 \varnothing 40\)} & \multicolumn{3}{|c|}{\(3 \varnothing 63\)} \\
\hline & \multicolumn{2}{|l|}{Vibration} & \multicolumn{8}{|c|}{V5} \\
\hline & \multicolumn{2}{|l|}{Noise [dB]} & \multicolumn{8}{|c|}{75} \\
\hline & \multicolumn{2}{|l|}{Installation} & \multicolumn{8}{|c|}{Horizontal or vertical (output shaft down)} \\
\hline & \multicolumn{2}{|l|}{Overload withstand level} & \multicolumn{8}{|c|}{\(120 \%\) of 30 min . rated output, 1 min .} \\
\hline & \multicolumn{2}{|l|}{Ambient temperature (\({ }^{\circ} \mathrm{C}\))} & \multicolumn{8}{|c|}{0 to 40} \\
\hline & \multicolumn{2}{|l|}{Insulation class} & \multicolumn{8}{|c|}{F class} \\
\hline & \multicolumn{2}{|l|}{Paint color} & \multicolumn{8}{|c|}{Munsell 5.27G 2.46/0.21} \\
\hline & \multicolumn{2}{|l|}{Accessories} & \multicolumn{8}{|c|}{Pulse generator and overheat detector} \\
\hline & \multicolumn{2}{|l|}{Lubrication of bearings} & \multicolumn{8}{|c|}{Grease} \\
\hline & \multicolumn{2}{|l|}{Output characteristic} & \multicolumn{2}{|l|}{Fig. 4} & \multicolumn{2}{|c|}{Fig. 5} & \multicolumn{4}{|c|}{Fig. 6} \\
\hline \multirow{13}{*}{-} & \multicolumn{2}{|l|}{Item Series} & \multicolumn{8}{|c|}{MDS-C1-} \\
\hline & \multicolumn{2}{|l|}{Model} & SPH-22 & SPH-37 & SP-55 & SP-75 & SP-110 & SP-150 & SP-185 & SP-220 \\
\hline & \multicolumn{2}{|l|}{Main circuit} & \multicolumn{8}{|c|}{IGBT IPM sinusoidal wave PWM inverter} \\
\hline & \multicolumn{2}{|l|}{Control circuit} & \multicolumn{8}{|c|}{Pulse generator speed feedback, digital closed-loop control, vector control} \\
\hline & \multicolumn{2}{|l|}{Braking} & \multicolumn{8}{|c|}{Power regenerative braking} \\
\hline & \multicolumn{2}{|l|}{Speed control range [r/min]} & \multicolumn{2}{|l|}{35 to 10000} & \multicolumn{2}{|l|}{35 to 8000} & \multicolumn{4}{|c|}{35 to 6000} \\
\hline & \multicolumn{2}{|l|}{Speed fluctuation rate} & \multicolumn{8}{|c|}{Max. 0.2\% of maximum speed (under load varying from 10\% to 100\%)} \\
\hline & \multicolumn{2}{|l|}{Speed command} & \multicolumn{8}{|c|}{Serial connection with M500/M50 and above CNC} \\
\hline & \multicolumn{2}{|l|}{Ambient temperature/humidity} & \multicolumn{8}{|c|}{\(0^{\circ} \mathrm{C}\) to \(55^{\circ} \mathrm{C} / 90 \%\) RH or less (with no dew condensation)} \\
\hline & \multicolumn{2}{|l|}{Storage temperature/humidity} & \multicolumn{8}{|c|}{\(-15^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C} / 90 \% \mathrm{RH}\) or less (with no dew condensation)} \\
\hline & \multicolumn{2}{|l|}{Atmosphere} & \multicolumn{8}{|c|}{To be free from detrimental gas and dust
(to conform with "grade C" environmental resistance specified by JEM1103)} \\
\hline & \multicolumn{2}{|l|}{Vibration} & \multicolumn{8}{|c|}{\(4.90 \mathrm{~m} / \mathrm{s}^{2}(0.5 \mathrm{G})\) or less} \\
\hline & \multicolumn{2}{|l|}{Noise} & \multicolumn{8}{|c|}{Less than 55dB} \\
\hline
\end{tabular}
(Note 1) The motor rated output is guaranteed with the power supply unit rated input voltage (200/220/230VAC). The rated output may not be achieved if the input voltage fluctuates and drops to 200 VAC or less.
(Note 2) Contact Mitsubishi when a rated output range other than \(1: 8\), or \(1: 12\) is required.
(Note 3) The \(50 \%\) ED rating is ON for five minutes and OFF for five minutes in the 10 minute cycle time.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & Item & Series & & Wide & 8) rated 0 & ut Series & & Wide ra S & d output ies \\
\hline & & & & & SJ-V & & & & J- \\
\hline & Mode & & 11-01 & 11-09 & 15-03 & 18.5-03 & 22-05 & 22XW5 & 22XW8 \\
\hline & & Cont. rating (HP)/(kW) & 5/3.7 & 7/5.5 & 10/7.5 & 12/9 & 15/11 & 20/15 & 25/18.5 \\
\hline & & \[
\begin{aligned}
& 30 \text { min. rating } \\
& 50 \% \text { ED rating }
\end{aligned} \text { (HP)/(kW) }
\] & 7/5.5 & 10/7.5 & 12/9 & 15/11 & 20/15 & 25/18.5 & 30/22 \\
\hline & ס & Basic speed [r/min] & & & 750 & & & 500 & 600) \\
\hline & & & & & 6000 & & & 4500 & 4000 \\
\hline & Fram & e No. & B112 & A160 & A160 & B160 & B160 & B180 & A200 \\
\hline ¢ & Cont & rated torque \(\begin{array}{r}\mathrm{N} \cdot \mathrm{m} \\ (\mathrm{kg} \cdot \mathrm{m})\end{array}\) & \[
\begin{array}{r}
47.1 / \\
4.81
\end{array}
\] & \[
\begin{array}{r}
70.0 / \\
7.14
\end{array}
\] & \[
\begin{array}{r}
95.5 / \\
9.74
\end{array}
\] & \[
\begin{gathered}
115 / \\
11.7
\end{gathered}
\] & \[
\begin{gathered}
140 / \\
14.3
\end{gathered}
\] & \[
\begin{array}{r}
239 / \\
24.4
\end{array}
\] & \[
\begin{array}{r}
294 / \\
30.0
\end{array}
\] \\
\hline \(\stackrel{0}{0}\) & \(G D^{2}\) & [\(\mathrm{kg} \cdot \mathrm{m}^{2}\)] & 0.12 & 0.23 & 0.23 & 0.32 & 0.32 & 1.36 & 2.19 \\
\hline 흥 & Weig & [kg] & 70 & 125 & 125 & 155 & 155 & 300 & 390 \\
\hline O & Toler & able radial load [kg] & 200 & & & & & 400 & 600 \\
\hline & Cool & ing fan [W] & \(3 \varnothing 40\) & & & & & 180 & \(3 \varnothing 60\) \\
\hline & Vibra & ation & & & V5 & & & & \\
\hline & Nois & [dB] & & & 75 & & & 80 & 85 \\
\hline & Insta & llation & & & Horizont & vertical (out & t shaft do & & \\
\hline & Over & load withstand level & & & 120\% & min. rated & utput, 1 min & & \\
\hline & Amb & ent temperature \(\quad\left({ }^{\circ} \mathrm{C}\right)\) & & & & 0 to 40 & & & \\
\hline & Insul & ation class & & & & F class & & & \\
\hline & Pain & color & & & & ell 5.27G & 46/0.21 & & \\
\hline & Acce & ssories & & & Pulse g & ator and o & heat detec & & \\
\hline & Lubri & cation of bearings & & & & Greas & & & \\
\hline & Outp & ut characteristic & & & Fig. 7 & & & Fig. 8 & Fig. 9 \\
\hline & Item & Series & & & & MDS-C & & & \\
\hline & Mod & & & & SP-185 & SP-220 & SP-260 & SP-300 & SP-300 \\
\hline & Main & circuit & & & IGBT IPM & nusoidal wa & PWM inve & & \\
\hline & Cont & rol circuit & & se gener & speed fe & ack, digital & sed-loop c & trol, vector c & ntrol \\
\hline 旨 & Brak & & & & & regenerat & braking & & \\
\hline \(\stackrel{\otimes}{2}\) & Spee & d control range [r/min] & & & 35 to 60 & & & 35 to 4500 & 35 to 4000 \\
\hline 은 & Spee & d fluctuation rate & & ax. 0.2\% & maximum & ed (under & d varying f & m 10\% to 10 & \\
\hline \(\stackrel{\text { ¢ }}{\bar{\circ}}\) & Spee & d command & & & ial connec & with M500 & 50 and abo & CNC & \\
\hline \% & Amb & ent temperature/humidity & & \(0^{\circ} \mathrm{C}\) & \(55^{\circ} \mathrm{C} / 90\) & or less (v & no dew co & densation) & \\
\hline 0 & Stora & age temperature/humidity & & \(-15^{\circ}\) & \(70^{\circ} \mathrm{C} / 90\) & H or less (& no dew con & densation) & \\
\hline & Atmo & sphere & & onform & To be fre "grade C & m detrim ironmenta & gas and sistance sp & ecified by JEM & 1103) \\
\hline & Vibra & ation & & & & \(\mathrm{m} / \mathrm{s}^{2}(0.5 \mathrm{G}\) & less & & \\
\hline & Nois & & & & & Less than 5 & & & \\
\hline
\end{tabular}
(Note 1) The motor rated output is guaranteed with the power supply unit rated input voltage (200/220/230VAC). The rated output may not be achieved if the input voltage fluctuates and drops to 200VAC or less.
(Note 2) Contact Mitsubishi when a rated output range other than \(1: 8\), or \(1: 12\) is required.
(Note 3) The \(50 \%\) ED rating is ON for five minutes and OFF for five minutes in the 10 minute cycle time.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{Item Series} & \multicolumn{6}{|c|}{High-speed Series} \\
\hline & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Model}} & \multicolumn{6}{|c|}{SJ-V} \\
\hline & & & 3.7-02ZM & 7.5-03ZM & 11-06ZM & 11-08ZM & 22-06ZM & 30-02ZM \\
\hline & \multirow[b]{2}{*}{} & Cont. rating (HP)/(kW) & 3/2.2 & 7/5.5 & 7/5.5 & 10/7.5 & 15/11 & 25/18.5 \\
\hline & & \[
\begin{aligned}
& 30 \mathrm{~min} . \text { rating } \\
& 50 \% \text { ED rating }
\end{aligned}(\mathrm{HP}) /(\mathrm{kW})
\] & \[
\begin{gathered}
5 / 3.7 \\
(15 \text { min. rating })
\end{gathered}
\] & 10/7.5 & 10/7.5 & 15/11 & 20/15 & 30/22 \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { O} \\
& \text { © } \\
& \dot{\circ}
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{ll}
\text { Basic speed } & {[r / m i n]} \\
\text { Max. speed } & {[r / m i n]}
\end{array}
\]} & 3000 & \multicolumn{5}{|c|}{1500} \\
\hline & & & 15000 & \multicolumn{2}{|c|}{12000} & \multicolumn{3}{|c|}{8000} \\
\hline & \multicolumn{2}{|l|}{Frame No.} & A90 & A112 & A112 & B112 & A160 & B160 \\
\hline \[
\begin{array}{|l|l|}
\hline \text { 흘 }
\end{array}
\] & \multicolumn{2}{|l|}{Cont. rated torque \(\begin{array}{r}\text { (} \begin{array}{r}\mathrm{N} \cdot \mathrm{m} \\ (\mathrm{kg} \cdot \mathrm{m})\end{array} \\ \hline\end{array}\)} & \[
\begin{aligned}
& 7.0 / \\
& 0.71
\end{aligned}
\] & \[
\begin{gathered}
35.0 / \\
3.57
\end{gathered}
\] & \[
\begin{array}{r}
35.0 / \\
3.57
\end{array}
\] & \[
\begin{array}{r}
47.71 \\
4.87
\end{array}
\] & \[
\begin{array}{r}
70.0 / \\
9.14
\end{array}
\] & \[
\begin{array}{r}
118 / \\
12.0
\end{array}
\] \\
\hline \[
\stackrel{0}{\underline{0}}
\] & \multicolumn{2}{|l|}{\(\mathrm{GD}^{2} \quad\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]\)} & 0.027 & 0.098 & 0.098 & 0.12 & 0.23 & 0.32 \\
\hline \[
\begin{aligned}
& \overline{0} \\
& 0 \\
& 0
\end{aligned}
\] & \multicolumn{2}{|l|}{Weight [kg]} & 25 & 60 & 60 & 70 & 125 & 155 \\
\hline & \multicolumn{2}{|l|}{Tolerable radial load [kg]} & 50 & \multicolumn{2}{|c|}{100} & 150 & \multicolumn{2}{|c|}{200} \\
\hline & \multicolumn{2}{|l|}{Cooling fan [W]} & 42 & \multicolumn{3}{|c|}{\(3 \varnothing 40\)} & \multicolumn{2}{|c|}{\(3 \varnothing 63\)} \\
\hline & \multicolumn{2}{|l|}{Vibration} & \multicolumn{6}{|c|}{V5} \\
\hline & \multicolumn{2}{|l|}{Noise [dB]} & \multicolumn{6}{|c|}{75} \\
\hline & \multicolumn{2}{|l|}{Installation} & \multicolumn{6}{|c|}{Horizontal or vertical (output shaft down)} \\
\hline & \multicolumn{2}{|l|}{Overload withstand level} & \multicolumn{6}{|c|}{\(120 \%\) of 30 min . rated output, 1 min .} \\
\hline & \multicolumn{2}{|l|}{Ambient temperature \(\quad\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{6}{|c|}{0 to 40} \\
\hline & \multicolumn{2}{|l|}{Insulation class} & \multicolumn{6}{|c|}{F class} \\
\hline & \multicolumn{2}{|l|}{Paint color} & \multicolumn{6}{|c|}{Munsell 5.27G 2.46/0.21} \\
\hline & \multicolumn{2}{|l|}{Accessories} & \multicolumn{6}{|c|}{Pulse generator and overheat detector} \\
\hline & \multicolumn{2}{|l|}{Lubrication of bearings} & \multicolumn{6}{|c|}{Grease} \\
\hline & \multicolumn{2}{|l|}{Output characteristic} & Fig. 10 & Fig. 11 & Fig. 12 & \multicolumn{3}{|c|}{Fig. 13} \\
\hline \multirow{13}{*}{} & \multicolumn{2}{|l|}{Item Series} & \multicolumn{6}{|c|}{MDS-C1-} \\
\hline & \multicolumn{2}{|l|}{Model} & SPH-37 & SPH-110 & SPH-150 & SP-185 & SP-220 & SP-300 \\
\hline & \multicolumn{2}{|l|}{Main circuit} & \multicolumn{6}{|c|}{IGBT IPM sinusoidal wave PWM inverter} \\
\hline & \multicolumn{2}{|l|}{Control circuit} & \multicolumn{6}{|c|}{Pulse generator speed feedback, digital closed-loop control, vector control} \\
\hline & \multicolumn{2}{|l|}{Braking} & \multicolumn{6}{|c|}{Power regenerative braking} \\
\hline & \multicolumn{2}{|l|}{Speed control range [r/min]} & 35 to 15000 & 35 to & 2000 & \multicolumn{3}{|c|}{35 to 8000} \\
\hline & \multicolumn{2}{|l|}{Speed fluctuation rate} & \multicolumn{6}{|c|}{Max. 0.2\% of maximum speed (under load varying from 10\% to 100\%)} \\
\hline & \multicolumn{2}{|l|}{Speed command} & \multicolumn{6}{|c|}{Serial connection with M500/M50 and above CNC} \\
\hline & \multicolumn{2}{|l|}{Ambient temperature/humidity} & \multicolumn{6}{|c|}{\(0^{\circ} \mathrm{C}\) to \(55^{\circ} \mathrm{C} / 90 \% \mathrm{RH}\) or less (with no dew condensation)} \\
\hline & \multicolumn{2}{|l|}{Storage temperature/humidity} & \multicolumn{6}{|c|}{\(-15^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C} / 90 \% \mathrm{RH}\) or less (with no dew condensation)} \\
\hline & \multicolumn{2}{|l|}{Atmosphere} & \multicolumn{6}{|c|}{To be free from detrimental gas and dust (to conform with "grade C" environmental resistance specified by JEM1103)} \\
\hline & \multicolumn{2}{|l|}{Vibration} & \multicolumn{6}{|c|}{\(4.90 \mathrm{~m} / \mathrm{s}^{2}(0.5 \mathrm{G})\) or less} \\
\hline & \multicolumn{2}{|l|}{Noise} & \multicolumn{6}{|c|}{Less than 55dB} \\
\hline
\end{tabular}
(Note 1) The motor rated output is guaranteed with the power supply unit rated input voltage (200/220/230VAC). The rated output may not be achieved if the input voltage fluctuates and drops to 200VAC or less.
(Note 2) Contact Mitsubishi when a rated output range other than \(1: 8\), or \(1: 12\) is required.
(Note 3) The \(50 \%\) ED rating is ON for five minutes and OFF for five minutes in the 10 minute cycle time.

(Note 1) The motor rated output is guaranteed with the power supply unit rated input voltage (200/220/230VAC). The rated output may not be achieved if the input voltage fluctuates and drops to 200VAC or less.
(Note 2) For speeds faster than \(6000 \mathrm{~min}^{-1}\), the speed will be the reduced output calculated with rated output \(\times \frac{6000}{\text { speed }}\)
(Note 3) The 50\% ED rating is ON for five minutes and OFF for five minutes in the 10 minute cycle time.

\subsection*{2.2 Output characteristics}

Fig. 3
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Output P1/P2 } \\
\hline SJ-22AP & SJ-22A & SJ-26A & SJ-30A \\
\hline \(22 / 15(\mathrm{~kW})\) & \(22 / 18.5(\mathrm{~kW})\) & \(26 / 22(\mathrm{~kW})\) & \(30 / 22(\mathrm{~kW})\) \\
\hline \(30 / 20(\mathrm{HP})\) & \(30 / 25(\mathrm{HP})\) & \(35 / 30(\mathrm{HP})\) & \(40 / 30(\mathrm{HP})\) \\
\hline
\end{tabular}

Fig. 4
\begin{tabular}{|c|c|l|l|}
\hline \multicolumn{4}{|c|}{ Output P1/P2/P3/P4 } \\
\hline SJ-V2.2-01 & SJ-V3.7-01 & & \\
\hline \(2.2 / 1.5 / 1.3 / 0.9(\mathrm{~kW})\) & \(3.7 / 2.2 / 2.2 / 1.3(\mathrm{~kW})\) & & \\
\hline \(3 / 2 / 1.8 / 1.2(\mathrm{HP})\) & \(5 / 3 / 3 / 2(\mathrm{HP})\) & & \\
\hline
\end{tabular}

Fig. 5
\begin{tabular}{|c|c|l|l|}
\hline \multicolumn{4}{|c|}{ Output P1/P2/P3/P4 } \\
\hline SJ-V5.5-01 & SJ-V7.5-01 & & \\
\hline \(5.5 / 3.7 / 4.1 / 2.8(\mathrm{~kW})\) & \(7.5 / 5.5 / 5.6 / 4.1(\mathrm{~kW})\) & & \\
\hline \(7 / 5 / 5.5 / 3.4(\mathrm{HP})\) & \(10 / 7 / 7 / 5.5(\mathrm{HP})\) & & \\
\hline
\end{tabular}

Fig. 6
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Output P1/P2/P3/P4 } \\
\hline SJ-V11-01 & SJ-V15-01 & SJ-V18.5-01 & SJ-V22-01 \\
\hline \(11 / 7.5 / 8.3 / 5.6(\mathrm{~kW})\) & \(15 / 11 / 11.3 / 8.3(\mathrm{~kW})\) & \(18.5 / 15 / 13.9 / 11.3(\mathrm{~kW})\) & \(22 / 18.5 / 16.5 / 13.9(\mathrm{~kW})\) \\
\hline \(15 / 10 / 11 / 7.6(\mathrm{HP})\) & \(20 / 15 / 15 / 11(\mathrm{HP})\) & \(25 / 20 / 19 / 15(\mathrm{HP})\) & \(30 / 25 / 22 / 19(\mathrm{HP})\) \\
\hline
\end{tabular}

Fig. 7
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{ Output P1/P2 } \\
\hline SJ-V11-01 & SJ-V11-09 & SJV15-03 & SJ-V18.5-03 & SJ-V22-05 \\
\hline \(5.5 / 3.7(\mathrm{~kW})\) & \(7.5 / 5.5(\mathrm{~kW})\) & \(9 / 7.5(\mathrm{~kW})\) & \(11 / 9(\mathrm{~kW})\) & \(15 / 11(\mathrm{~kW})\) \\
\hline \(7 / 5(\mathrm{HP})\) & \(10 / 7(\mathrm{HP})\) & \(12 / 10(\mathrm{HP})\) & \(15 / 12(\mathrm{HP})\) & \(20 / 15(\mathrm{HP})\) \\
\hline
\end{tabular}
P1

Fig. 14

\subsection*{2.3 Outline dimension drawings}

\subsection*{2.3.1 Motor}

Standard flange type 112 to 200 frame

Standard leg installation type 112 to 200 frame

Notes: 1. A space of at least 30 mm should be provided between the cooling fan and nearby located wall.
2. It can be installed vertically with the shaft down.
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Frame \\
No.
\end{tabular}} & \multicolumn{3}{|c|}{ Motor } \\
\cline { 2 - 4 } & \(\mathbf{L}\) & KL & LL \\
\hline B71F & 308.5 & 223.5 & 258.5 \\
\hline C 71 F & 368.5 & 283.5 & 318.5 \\
\hline
\end{tabular}

\section*{DIM IN mm}

\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Frame \\
No.
\end{tabular}} & \multicolumn{3}{|c|}{ Motor } \\
\cline { 2 - 4 } & L & KL & LL \\
\hline A90F & 401 & 290 & 341 \\
\hline B90F & 431 & 320 & 371 \\
\hline
\end{tabular} DIM IN mm

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Frame \\
No.
\end{tabular}} & \multicolumn{7}{|c|}{ Motor } \\
\cline { 2 - 9 } & \(\mathbf{A}\) & \(\mathbf{B}\) & \(\mathbf{F}\) & KL & \(\mathbf{L}\) & \(\mathbf{N}\) & \(\mathbf{R}\) \\
\hline A90S & 235 & 101 & 50 & 184 & 401 & 130 & 166 \\
\hline B90L & 252.5 & 113.5 & 62.5 & 201.5 & 431 & 155 & 178.5 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Frame \\
No.
\end{tabular}} & \multicolumn{4}{|c|}{ Motor } & \multicolumn{11}{|c|}{ Shaft end } \\
\cline { 2 - 17 } & A & KL & L & Q & QK & R & S & T & U & W & QL \\
\hline A112M & 349 & 298 & 549 & 60 & 45 & 200 & 28 & 7 & 4 & 7 & 7.5 \\
\hline B112M & 394 & 343 & 614 & 80 & 63 & 220 & 32 & 8 & 5 & 10 & 8 \\
\hline
\end{tabular}

DIM IN mm

SJ-V Series:
Standard leg installation
type 90 to 160 frame
type 90 to 160
* is only applicable to motor model SJ-V30-02ZM.
3. Status Display and Parameter Settings IV-30
3.1 Status display with 7-segment LED IV-30
3.2 Spindle parameters IV-31
3.3 Spindle specification parameters screen IV-60
3.4 Spindle monitor screen. IV-64
3.5 Control input signals IV-68
3.6 Control output signals IV-71
3.7 Meter outputs IV-74
3.8 Output interface. IV-76
3.9 Spindle protection/warning functions IV-77

\section*{3. Status Display and Parameter Settings}

\section*{\! WARNING}
1. Do not operate the switches with wet hands. Failure to observe this could lead to electric shocks.
2. Do not operate the unit with the front cover removed. The high voltage terminals and charged sections will be exposed, and could lead to electric shocks.
3. Do not open the front cover while the power is ON or during operation. Failure to observe this could lead to electric shocks.

\section*{! CAUTION}
1. Check and adjust each program and parameter before starting operation. Failure to do so could lead to unforeseen operation of the machine.
2. Do not touch the fin on the servo drive unit, regenerative resistor or servomotor, etc., while the power is turned ON or immediately after turning the power OFF. These parts may reach high temperatures, and can cause burns.

\subsection*{3.1 Status display with 7 -segment LED}

The status can be displayed on the 7 -segment LED on the power supply and spindle drives when the power is turned ON.

\subsection*{3.2 Spindle parameters}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ CAUTION } \\
\hline Do not make remarkable adjustments and changes as the operation could become unstable. \\
\hline
\end{tabular}

\section*{(1) Parameters}

For parameters marked with an " "" in the tables, turn the CNC power OFF after setting. The parameters will be valid after the power is turned ON again.
The "fixed control constants" and "fixed control bits" in this section are set by Mitsubishi. Set these to " 0 " unless designated in particular.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & Details & Setting range & Standard setting \\
\hline SP001 & PGM & Magnetic sensor and motor built-in encoder orientation position loop gain & As the set value is larger, the orientation time becomes shorter and servo rigidity is increased. However, vibration is increased and the machine becomes likely to overshoot. & \[
\begin{gathered}
0 \text { to } 1000 \\
(0.11 / \mathrm{s})
\end{gathered}
\] & 100 \\
\hline SP002 & PGE & Encoder orientation position loop gain & As the set value is larger, the orientation time becomes shorter and servo rigidity is increased. However, vibration is increased and the machine becomes likely to overshoot. & \[
\begin{gathered}
0 \text { to } 1000 \\
(0.11 / \mathrm{s})
\end{gathered}
\] & 100 \\
\hline SP003 & PGC0 & C-axis non-cutting position loop gain & \begin{tabular}{l}
Set the position loop gain in C-axis non-cutting mode. \\
During non-cutting (rapid traverse, etc.) with the Caxis control, this position loop gain setting is valid.
\end{tabular} & \[
\begin{array}{|c}
\hline 1 \text { to } 100 \\
(1 / \mathrm{s})
\end{array}
\] & 15 \\
\hline SP004 & OINP & Orientation in-position width & Set the position error range in which an orientation completion signal is output. & \[
\begin{array}{|c}
\hline 1 \text { to } 2880 \\
\left(1 / 16^{\circ}\right)
\end{array}
\] & 16 \\
\hline SP005 & OSP* & Orientation mode changing speed limit value & \begin{tabular}{l}
Set the motor speed limit value to be used when the speed loop is changed to the position loop in orientation mode. \\
When this parameter is set to " 0 ", SP017 (TSP) becomes the limit value.
\end{tabular} & \[
\begin{gathered}
0 \text { to } 32767 \\
(\mathrm{r} / \mathrm{min})
\end{gathered}
\] & 0 \\
\hline SP006 & CSP & Orientation mode deceleration rate & As the set value is larger, the orientation time becomes shorter. However, the machine becomes likely to overshoot. & 1 to 1000 & 20 \\
\hline SP007 & OPST & Position shift amount for orientation & \begin{tabular}{l}
Set the stop position for orientation. \\
(1) Motor built-in encoder, encoder: \\
Set the value by dividing \(360^{\circ}\) by 4096. \\
(2) Magnetic sensor: \\
Divide -5 to \(+5^{\circ}\) by 1024 and put \(0^{\circ}\) for 0 .
\end{tabular} & \begin{tabular}{l}
(1) 0 to 4095 \\
(2) -512 to 512
\end{tabular} & 0 \\
\hline SP008 & & & Not used. Set "0". & 0 & 0 \\
\hline SP009 & PGT & Synchronized tapping position loop gain & Set the spindle position loop gain in synchronized tapping mode. & \[
\begin{array}{|l|}
\hline 1 \text { to } 100 \\
(1 / s)
\end{array}
\] & 15 \\
\hline SP010 & PGS & Spindle synchronous position loop gain & Set the spindle position loop gain in spindle synchronization mode. & \[
\begin{array}{|c}
\hline 1 \text { to } 100 \\
(1 / \mathrm{s})
\end{array}
\] & 15 \\
\hline \[
\begin{array}{|l}
\hline \text { SP011 } \\
\text { to } \\
\text { SP016 }
\end{array}
\] & & & Use not possible. & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & Details & Setting range (Unit) & Standard setting \\
\hline SP017 & TSP* & Maximum motor speed & Set the maximum motor speed of the spindle. & \[
\begin{array}{|r|}
\hline 1 \text { to } \begin{array}{r}
32767 \\
(r / m i n)
\end{array}
\end{array}
\] & 6000 \\
\hline SP018 & ZSP* & Motor zero speed & Set the motor speed for which zero-speed output is performed. & \[
\begin{aligned}
& \text { 1 to } 1000 \\
& (\mathrm{r} / \mathrm{min})
\end{aligned}
\] & 50 \\
\hline SP019 & CSN1* & Speed cushion 1 & \begin{tabular}{l}
Set the time constant for a speed command from "0" to the maximum speed. \\
(This parameter is invalid in position loop mode.)
\end{tabular} & \[
\begin{gathered}
0 \text { to } 32767 \\
(10 \mathrm{~ms})
\end{gathered}
\] & 30 \\
\hline SP020 & SDTS* & Speed detection set value & \begin{tabular}{l}
Set the motor speed for which speed detection output is performed. \\
Usually, the setting value is \(10 \%\) of SP017 (TSP).
\end{tabular} & \[
\begin{array}{r|}
\hline 0 \text { to } \begin{array}{r}
32767 \\
(\mathrm{r} / \mathrm{min})
\end{array}
\end{array}
\] & 600 \\
\hline SP021 & TLM1 & Torque limit 1 & Set the torque limit rate for torque limit signal 001. & 0 to 120 (\%) & 10 \\
\hline SP022 & VGNP1* & Speed loop gain proportional term under speed control & \begin{tabular}{l}
Set the speed loop proportional gain in speed control mode. \\
When the gain is increased, response is improved but vibration and sound become larger.
\end{tabular} & \[
\begin{array}{|r|}
\hline 0 \text { to } \begin{array}{r}
1000 \\
(1 / s)
\end{array} \\
\hline
\end{array}
\] & 63 \\
\hline SP023 & VGNI1* & Speed loop gain integral term under speed control & \begin{tabular}{l}
Set the speed loop integral gain in speed control mode. \\
Usually, set a value in proportion to SP022 (VGNP1).
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1000 \\
& (0.1 \mathrm{l} / \mathrm{s})
\end{aligned}
\] & 60 \\
\hline SP024 & & & Not used. Set "0". & 0 & 0 \\
\hline SP025 & GRA1* & Spindle gear teeth count 1 & Set the number of gear teeth of the spindle corresponding to gear 000. & 1 to 32767 & 1 \\
\hline SP026 & GRA2* & Spindle gear teeth count 2 & Set the number of gear teeth of the spindle corresponding to gear 001. & 1 to 32767 & 1 \\
\hline SP027 & GRA3* & Spindle gear teeth count 3 & Set the number of gear teeth of the spindle corresponding to gear 010. & 1 to 32767 & 1 \\
\hline SP028 & GRA4* & Spindle gear teeth count 4 & Set the number of gear teeth of the spindle corresponding to gear 011. & 1 to 32767 & 1 \\
\hline SP029 & GRB1* & Motor shaft gear teeth count 1 & Set the number of gear teeth of the motor shaft corresponding to gear 000. & 1 to 32767 & 1 \\
\hline SP030 & GRB2* & Motor shaft gear teeth count 2 & Set the number of gear teeth of the motor shaft corresponding to gear 001. & 1 to 32767 & 1 \\
\hline SP031 & GRB3* & Motor shaft gear teeth count 3 & Set the number of gear teeth of the motor shaft corresponding to gear 010. & 1 to 32767 & 1 \\
\hline SP032 & GRB4* & Motor shaft gear teeth count 4 & Set the number of gear teeth of the motor shaft corresponding to gear 011. & 1 to 32767 & 1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & Details & Setting range (Unit) & Standard setting \\
\hline SP044 & TRANS* & NC communication frequency & Set a frequency of data communication with NC. & 0 to 32767 & \begin{tabular}{l}
Standard: 0 \\
Special:
\[
1028
\]
\end{tabular} \\
\hline SP045 & CSNT & Dual cushion timer & \begin{tabular}{l}
Set the cycle to add the increment values in the dual cushion process. \\
When this setting value is increased, the dual cushion will increase, and the changes in the speed during acceleration/deceleration will become gradual.
\end{tabular} & \[
\begin{array}{|r}
\hline 0 \text { to } 1000 \\
(\mathrm{~ms})
\end{array}
\] & 0 \\
\hline SP046 & CSN2* & Speed command dual cushion & \begin{tabular}{l}
For an acceleration/deceleration time constant defined in SP019 (CSN1), this parameter is used to provide smooth movement only at the start of acceleration/deceleration. \\
As the value of this parameter is smaller, it moves smoother but the acceleration/deceleration time becomes longer. \\
To make this parameter invalid, set " 0 ".
\end{tabular} & 0 to 1000 & 0 \\
\hline SP047 & SDTR* & Speed detection reset value & Set the reset hysteresis width for a speed detection set value defined in SP020 (SDTS). & \[
\begin{array}{|l|l|}
\hline 0 \text { to } 1000 \\
(r / m i n)
\end{array}
\] & 30 \\
\hline SP048 & SUT* & Speed reach range & Set the speed deviation rate with respect to the commanded speed for output of the speed reach signal. & 0 to 100 (\%) & 15 \\
\hline SP049 & TLM2 & Torque limit 2 & Set the torque limit rate for the torque limit signal 010. & 1 to 120 (\%) & 20 \\
\hline SP050 & TLM3 & Torque limit 3 & Set the torque limit rate for the torque limit signal 011. & 1 to 120 (\%) & 30 \\
\hline SP051 & TLM4 & Torque limit 4 & Set the torque limit rate for the torque limit signal 100. & 1 to 120 (\%) & 40 \\
\hline SP052 & TLM5 & Torque limit 5 & Set the torque limit rate for the torque limit signal 101. & 1 to 120 (\%) & 50 \\
\hline SP053 & TLM6 & Torque limit 6 & Set the torque limit rate for the torque limit signal 110. & 1 to 120 (\%) & 60 \\
\hline SP054 & TLM7 & Torque limit 7 & Set the torque limit rate for the torque limit signal 111. & 1 to 120 (\%) & 70 \\
\hline SP055 & SETM* & Excessive speed deviation timer & \begin{tabular}{l}
Set the timer value until the excessive speed deviation alarm is output. \\
The value of this parameter should be longer than the acceleration/deceleration time.
\end{tabular} & 0 to 60 (s) & 12 \\
\hline SP056 & PYVR & Variable excitation (min value) & Set the minimum value of the variable excitation rate. Select a smaller value when gear noise is too high. However, a larger value is effective for impact response. & 0 to 100 (\%) & 50 \\
\hline SP057 & STOD* & Fixed control constant & Set by Mitsubishi. Set "0" unless designated in particular. & 0 & 0 \\
\hline SP058 & SDT2* & Fixed control constant & Set by Mitsubishi. Set "0" unless designated in particular. & 0 & 0 \\
\hline SP059 & MKT* & Winding changeover base interception timer & \begin{tabular}{l}
Set the base interception time for contactor switching at winding changeover. \\
Note that the contactor may be damaged with burning if the value of this parameter is too small.
\end{tabular} & \[
\begin{gathered}
50 \text { to } 10000 \\
(\mathrm{~ms})
\end{gathered}
\] & 150 \\
\hline SP060 & MKT2* & Current limit timer after winding changeover & Set the current limit time to be taken after completion of contactor switching at winding changeover. & \[
\begin{gathered}
0 \text { to } 10000 \\
(\mathrm{~ms})
\end{gathered}
\] & 500 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & Details & Setting range & Standard setting \\
\hline SP061 & MKIL* & Current limit value after winding changeover & Set the current limit value during a period defined in SP060 (MKT2) after completion of contactor switching at winding changeover. & 0 to 120 (\%) & 75 \\
\hline SP062 & & & Not used. Set to "0". & 0 & 0 \\
\hline SP063 & OLT* & Overload alarm detection time & Set the time constant for detection of the motor overload alarm. & 0 to 1000 (s) & 60 \\
\hline SP064 & OLL* & Overload alarm detection level & Set the detection level of the motor overload alarm. & 0 to 120 (\%) & 110 \\
\hline SP065 & VCGN1* & Target value of variable speed loop proportional gain & Set the magnification of speed loop proportional gain with respect to SP022 (VGNP1) at the maximum motor speed defined in SP017 (TSP). & 0 to 100 (\%) & 100 \\
\hline SP066 & VCSN1* & Change starting speed of variable speed loop proportional gain & Set the speed when the speed loop proportional gain change starts. & \[
\begin{array}{|c}
0 \text { to } 32767 \\
(\mathrm{r} / \mathrm{min})
\end{array}
\] & 0 \\
\hline SP067 & VIGWA* & Change starting speed of variable current loop gain & Set the speed where the current loop gain change starts. & \[
\begin{array}{|r|r|}
\hline 0 \text { to } 32767 \\
(\mathrm{r} / \mathrm{min})
\end{array}
\] & 0 \\
\hline SP068 & VIGWB* & Change ending speed of variable current loop gain & Set the speed where the current loop gain change ends. & \begin{tabular}{l}
0 to 32767 \\
(r/min)
\end{tabular} & 0 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & \multicolumn{4}{|c|}{Details} & Setting range (Unit) & Standard setting \\
\hline SP088 & SIDN* & Speed for starting change of variable torque limit magnification at deceleration & \multicolumn{4}{|l|}{Set the speed where the torque limit value at deceleration starts to change.} & \[
\begin{aligned}
& \hline \begin{array}{l}
0 \text { to } 32767 \\
(r / m i n)
\end{array} \\
& \hline
\end{aligned}
\] & 3000 \\
\hline SP089 & & & \multicolumn{4}{|l|}{Not used. Set to "0".} & 0 & 0 \\
\hline SP090 & & & \multicolumn{4}{|l|}{Not used. Set to "0".} & 0 & 0 \\
\hline SP091 & OFSN & Motor PLG forward rotation offset compensation & \multicolumn{4}{|l|}{Set the PLG offset value for the forward rotation. Normally set to "0".} & \begin{tabular}{l}
-2048 to 2047 \\
(-1mv)
\end{tabular} & 0 \\
\hline SP092 & OFSI & Motor PLG reverse rotation offset compensation & \multicolumn{4}{|l|}{Set the PLG offset value for the reverse rotation. Normally set to " 0 ".} & \[
\begin{aligned}
& \hline-2048 \text { to } \\
& 2047 \\
& (-1 \mathrm{mv})
\end{aligned}
\] & 0 \\
\hline SP093 & ORE* & Fixed control constant & \multicolumn{4}{|l|}{\begin{tabular}{l}
Set by Mitsubishi. \\
Set "0" unless designated in particular.
\end{tabular}} & 0 & 0 \\
\hline SP094 & LMAV* & Load meter output filter & \multicolumn{4}{|l|}{Set the filter time constant of load meter output. When " 0 " is set, a filter time constant is set to 100 ms .} & \[
\begin{array}{r}
0 \text { to } 32767 \\
(2 \mathrm{~ms})
\end{array}
\] & 0 \\
\hline SP095 & VFAV* & Fixed control constant & \multicolumn{4}{|l|}{Set by Mitsubishi. Set "0" unless designated in particular.} & 0 & 0 \\
\hline SP096 & EGAR* & Encoder gear ratio & Set the gear encoder as indicat & ar ratio betwe nd (except fo ed below. & n the s the mot & indle end and the r-built-in encoder) & -3 to 4 & 0 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & Details & Setting range (Unit) & Standard setting \\
\hline SP101 & DINP* & Orientation advance inposition width & When using the orientation in-position advance function, set the in-position width that is larger than the normal in-position width defined in SP004 (OINP). & \[
\begin{aligned}
& \hline 1 \text { to } 2880 \\
& \left(1 / 16^{\circ}\right)
\end{aligned}
\] & 16 \\
\hline SP102 & OODR* & Excessive error value in orientation mode & Set the excessive error width in orientation mode. & \[
\begin{aligned}
& \hline 0 \text { to } 32767 \\
& (1 / 4 \text { pulse }) \\
& (1 \text { pulse }) \\
& \left.0.088^{\circ}\right)
\end{aligned}
\] & 32767 \\
\hline SP103 & FTM* & Index positioning completion OFF time timer & Set the time for forcedly turning OFF the index positioning completion signal (different from the orientation completion signal) after the leading edge of the indexing start signal. & \[
\begin{aligned}
& \begin{array}{l}
0 \text { to } 10000 \\
\text { (ms) }
\end{array} \\
& \hline
\end{aligned}
\] & 200 \\
\hline SP104 & TLOR* & Torque limit value for orientation servo locking & \begin{tabular}{l}
Set the torque limit value for orientation in-position output. \\
If the external torque limit signal is input, the torque limit value set with this parameter becomes invalid.
\end{tabular} & 0 to 120 (\%) & 100 \\
\hline SP105 & IQG0* & Current loop gain magnification 1 in orientation mode & Set the magnification for current loop gain (torque component) at orientation completion. & \[
\begin{aligned}
& 1 \text { to } 1000 \\
& (\%)
\end{aligned}
\] & 100 \\
\hline SP106 & IDG0* & Current loop gain magnification 2 in orientation mode & Set the magnification for current loop gain (excitation component) at orientation completion. & \[
\begin{aligned}
& 1 \text { to } 1000 \\
& (\%)
\end{aligned}
\] & 100 \\
\hline SP107 & CSP2 & Deceleration rate 2 in orientation mode & \begin{tabular}{l}
Set the deceleration rate in orientation mode corresponding to the gear 001. \\
When this parameter is set to " 0 ", the rate will be the same as SP006 (CSP).
\end{tabular} & 0 to 1000 & 0 \\
\hline SP108 & CSP3 & Deceleration rate 3 in orientation mode & \begin{tabular}{l}
Set the deceleration rate in orientation mode corresponding to the gear 010. \\
When this parameter is set to " 0 ", the rate will be the same as SP006 (CSP).
\end{tabular} & 0 to 1000 & 0 \\
\hline SP109 & CSP4 & Deceleration rate 4 in orientation mode & \begin{tabular}{l}
Set the deceleration rate in orientation mode corresponding to the gear 011. \\
When this parameter is set to " 0 ", the rate will be the same as SP006 (CSP).
\end{tabular} & 0 to 1000 & 0 \\
\hline SP110 & WCML & Fixed control constants & Set by Mitsubishi. Set "0" unless designated in particular. & 0 & 0 \\
\hline SP111 & WDEL & Fixed control constants & Set by Mitsubishi. Set "0" unless designated in particular. & 0 & 0 \\
\hline SP112 & WCLP & Fixed control constants & Set by Mitsubishi. Set "0" unless designated in particular. & 0 & 0 \\
\hline SP113 & WINP & Fixed control constants & \begin{tabular}{l}
Set by Mitsubishi. \\
Set "0" unless designated in particular.
\end{tabular} & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & Details & Setting range (Unit) & Standard setting \\
\hline SP114 & OPER & Orientation pulse miss check value & \begin{tabular}{l}
An alarm " 5 C " will occur if the pulse miss value at the orientation stop exceeds this setting value. (Note that this is invalid when set to "0".) \\
In this parameter, set the value to fulfill the following conditions. \\
SP114 setting value \(>1.5 \times\) SP004 (orientation in-position width)
\end{tabular} & \[
\begin{array}{l|}
\hline 0 \text { to } 32767 \\
\left(360^{\circ} / 4096\right)
\end{array}
\] & 0 \\
\hline \[
\begin{array}{|c|}
\hline \text { SP115 } \\
\text { to } \\
\text { SP118 }
\end{array}
\] & & & Set by Mitsubis hi. Set "0" unless designated in particular. & 0 & 0 \\
\hline SP119 & MPGH & Orientation position gain H winding compensation magnification & \begin{tabular}{l}
Set the compensation magnification of the orientation position loop gain for the H winding. \\
H winding orientation position loop gain
\[
=\text { SP001 (or SP002) } \times \text { SP119/256 }
\] \\
When this parameter is set to " 0 ", the magnification will become the same as SP001 or SP002.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 2560 \\
& \text { (1/256-fold) }
\end{aligned}
\] & 0 \\
\hline SP120 & MPGL & Orientation position gain L winding compensation magnification & \begin{tabular}{l}
Set the compensation magnification of the orientation position loop gain for the \(L\) winding. \\
L winding orientation position loop gain
\[
=\text { SP001 (or SP002) } \times \text { SP120/256 }
\] \\
When this parameter is set to " 0 ", the magnification will become the same as SP001 or SP002.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 2560 \\
& (1 / 256 \text {-fold) }
\end{aligned}
\] & 0 \\
\hline SP121 & MPCSH & Orientation deceleration rate H winding compensation magnification & \begin{tabular}{l}
Set the compensation magnification of the orientation deceleration rate for the H winding. \\
Orientation deceleration rate for the H winding
\[
=\text { SP006 } \times \text { SP121/256 }
\] \\
When this parameter is set to " 0 ", the magnification will become the same as SP006.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 2560 \\
& (1 / 256 \text {-fold) }
\end{aligned}
\] & 0 \\
\hline SP122 & MPCSL & Orientation deceleration rate L winding compensation magnification & \begin{tabular}{l}
Set the compensation magnification of the orientation deceleration rate for the \(L\) winding. \\
Orientation deceleration rate for the \(L\) winding
\[
=\text { SP006 } \times \text { SP122/256 }
\] \\
When this parameter is set to " 0 ", the magnification will become the same as SP006.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 2560 \\
& (1 / 256 \text {-fold) }
\end{aligned}
\] & 0 \\
\hline SP123 & MGD0 & Magnetic sensor output peak value & \begin{tabular}{l}
This parameter is used for adjustment of orientation operation of the magnetic sensor. \\
Set the output peak value of the magnetic sensor. If a gap between the sensor and the magnetizing element is small, increase the value of this parameter. If it is large, decrease the value of this parameter.
\end{tabular} & 1 to 10000 & Standard magnetizing element: 542 Small magnetizing element: 500 \\
\hline SP124 & MGD1 & Magnetic sensor linear zone width & \begin{tabular}{l}
This parameter is used for adjustment of orientation operation of the magnetic sensor. Set the linear zone width of the magnetic sensor. \\
If the radius of the mounted magnetizing element is large, decrease the value of this parameter. If it is small, increase the value of this parameter.
\end{tabular} & 1 to 10000 & Standard magnetizing element: 768 Small magnetizing element: 440 \\
\hline SP125 & MGD2 & Magnetic sensor switching point & \begin{tabular}{l}
This parameter is used for adjustment of orientation operation of the magnetic sensor. \\
Set the distance dimension from the target stop point at switching from position feedback to magnetic sensor output. \\
Normally, set a value that is approx. \(1 / 2\) of the value defined in SP124.
\end{tabular} & 1 to 10000 & Standard magnetizing element: 384 Small magnetizing element: 220 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & Details & Setting range (Unit) & Standard setting \\
\hline SP135 & VGCI0* & C-axis noncutting speed loop gain integral item & Set the speed loop integral gain in C-axis non-cutting mode. & \[
\begin{aligned}
& \hline 0 \text { to } 5000 \\
& (0.1 \mathrm{1} / \mathrm{s})
\end{aligned}
\] & 60 \\
\hline SP136 & VGCD0* & C-axis noncutting speed loop gain delay advance item & \begin{tabular}{l}
Set the speed loop delay advance gain in C-axis non-cutting mode. \\
When this parameter is set to " 0 ", PI control is applied.
\end{tabular} & \[
\begin{array}{|l}
\hline 0 \text { to } 5000 \\
(0.1 \mathrm{1} / \mathrm{s})
\end{array}
\] & 15 \\
\hline SP137 & VGCP1* & First speed loop gain proportional item for C -axis cutting & Set the speed loop proportional gain when the first gain is selected for C -axis cutting. & \[
\begin{aligned}
& \hline 0 \text { to } 5000 \\
& (1 / \mathrm{s})
\end{aligned}
\] & 63 \\
\hline SP138 & VGCI1* & First speed loop gain integral item for cutting on Caxis & Set the speed loop integral gain when the first gain is selected for C -axis cutting. & \[
\begin{array}{|l|}
\hline 0 \text { to } 5000 \\
(0.11 / \mathrm{s})
\end{array}
\] & 60 \\
\hline SP139 & VGCD1* & First speed loop gain delay advance item for cutting on C -axis & Set the speed loop delay advance gain when the first gain is selected for C -axis cutting. When this parameter is set to " 0 ", Pl control is applied. & \[
\begin{aligned}
& \hline 0 \text { to } 5000 \\
& (0.1 \mathrm{1} / \mathrm{s})
\end{aligned}
\] & 15 \\
\hline SP140 & VGCP2* & Second speed loop gain proportional item for cutting on Caxis & Set the speed loop proportional gain when the second gain is selected for C -axis cutting. & \[
\begin{aligned}
& \hline \begin{array}{l}
0 \text { to } 5000 \\
(1 / \mathrm{s})
\end{array}
\end{aligned}
\] & 63 \\
\hline SP141 & VGCI2* & Second speed loop gain integral item for cutting on C-axis & Set the speed loop integral gain when the second gain is selected for C -axis cutting. & \[
\begin{aligned}
& \hline 0 \text { to } 5000 \\
& (0.1 \mathrm{1} / \mathrm{s})
\end{aligned}
\] & 60 \\
\hline SP142 & VGCD2* & Second speed loop gain delay advance item for cutting on C -axis & Set the speed loop delay advance gain when the second gain is selected for C -axis cutting. When this parameter is set to " 0 ", Pl control is applied. & \[
\begin{aligned}
& \hline 0 \text { to } 5000 \\
& (0.11 / \mathrm{s})
\end{aligned}
\] & 15 \\
\hline SP143 & VGCP3* & Third speed loop gain proportional item for cutting on C-axis & Set the speed loop proportional gain when the third gain is selected for C -axis cutting. & \[
\begin{aligned}
& \begin{array}{l}
0 \text { to } 5000 \\
(1 / \mathrm{s})
\end{array}
\end{aligned}
\] & 63 \\
\hline SP144 & \(\mathrm{VGCl}^{*}\) & Third speed loop gain integral item for cutting on Caxis & Set the speed loop integral gain when the third gain is selected for C -axis cutting. & \[
\begin{aligned}
& 0 \text { to } 5000 \\
& (0.1 \mathrm{1} / \mathrm{s})
\end{aligned}
\] & 60 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & Details & Setting range (Unit) & Standard setting \\
\hline SP145 & VGCD3* & Third speed loop gain delay advance item for cutting on C -axis & Set the speed loop delay advance gain when the third gain is selected for C -axis cutting. When this parameter is set to " 0 ", PI control is applied. & \[
\begin{aligned}
& \hline 0 \text { to } 5000 \\
& (0.11 / \mathrm{s})
\end{aligned}
\] & 15 \\
\hline SP146 & VGCP4* & Speed loop gain proportional item for stop of cutting on C-axis & Set the speed loop proportional gain when C-axis cutting is stopped. & \[
\begin{aligned}
& \hline 0 \text { to } 5000 \\
& (1 / \mathrm{s})
\end{aligned}
\] & 63 \\
\hline SP147 & VGCl4* & Speed loop gain integral item for stop of cutting on C-axis & Set the speed loop integral gain when C-axis cutting is stopped. & \[
\begin{aligned}
& \hline 0 \text { to } 5000 \\
& (0.1 \mathrm{1} / \mathrm{s})
\end{aligned}
\] & 60 \\
\hline SP148 & VGCD4* & Speed loop gain delay advance item for stop of cutting on C-axis & Set the speed loop delay advance gain when C-axis cutting is stopped. When this parameter is set to " 0 ", PI control is applied. & \[
\begin{aligned}
& \hline 0 \text { to } 5000 \\
& (0.11 / \mathrm{s})
\end{aligned}
\] & 15 \\
\hline SP149 & CZRN & C-axis zero point return speed & \begin{tabular}{l}
This parameter is valid when SP129 (SPECC) bitE is set to "0". \\
Set the zero point return speed used when the speed loop changes to the position loop.
\end{tabular} & 1 to 500 (r/min) & 50 \\
\hline SP150 & CPDT & C-axis zero point return deceleration point & \begin{tabular}{l}
This parameter is valid when SP129 (SPECC) bitE is set to " 0 ". \\
Set the deceleration rate where the machine starts to decelerate when it returns to the target stop point during C -axis zero point return. \\
When the machine tends to overshoot at the stop point, set a smaller value.
\end{tabular} & 1 to 10000 & 1 \\
\hline SP151 & CPSTL & C-axis zero point return shift amount (low byte) & \begin{tabular}{l}
This parameter is valid when SP129 (SPECC) bitE is set to "0". \\
Set the C -axis zero point position.
\end{tabular} & HEX setting 00000000 to FFFFFFFF (1/1000 \()\) & \[
\begin{aligned}
& \text { H: } 0000 \\
& \text { L: } 0000
\end{aligned}
\] \\
\hline SP152 & CPSTH & C-axis zero point return shift amount (high byte) & & & \\
\hline SP153 & CINP & C-axis in-position width & Set the position error range in which the in-position signal is output on the C -axis. & \[
\begin{aligned}
& \hline 0000 \text { to } \\
& \text { FFFF } \\
& \left(1 / 1000^{\circ}\right) \\
& \text { HEX setting }
\end{aligned}
\] & 03E8 \\
\hline SP154 & CODRL & Excessive error width on C -axis (low byte) & Set the excessive error width on the C-axis. & HEX setting 00000000 to FFFFFFFF & \[
\begin{aligned}
& \text { H: } 0001 \\
& \text { L: D4C0 }
\end{aligned}
\] \\
\hline SP155 & \(\mathrm{CODRH}^{*}\) & Excessive error width on C-axis (high byte) & & (1/1000 \({ }^{\circ}\)) & \\
\hline \[
\begin{array}{|c|}
\hline \text { SP156 } \\
\text { to } \\
\text { SP158 }
\end{array}
\] & & & Not used. Set to "0". & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & Details & Setting range (Unit) & Standard setting \\
\hline SP159 & CPYO & C-axis noncutting variable excitation ratio & Set the minimum value of variable excitation ratio for non-cutting on the C -axis. & 0 to 100 (\%) & 50 \\
\hline SP160 & CPY1 & C-axis cutting variable excitation ratio & Set the minimum variable excitation ratio for cutting on the C -axis. & 0 to 100 (\%) & 100 \\
\hline SP161 & IQGC0* & Current loop gain magnification 1 for non-cutting on C-axis & Set the magnification of current loop gain (torque component) for C -axis non-cutting. & \[
\begin{aligned}
& \hline 1 \text { to } 1000 \\
& \text { (\%) }
\end{aligned}
\] & 100 \\
\hline SP162 & IDGC0* & Current loop gain magnification 2 for non-cutting on C-axis & Set the magnification of current loop gain (excitation component) for C -axis non-cutting. & \[
\begin{aligned}
& \hline \begin{array}{l}
1 \text { to } 1000 \\
(\%)
\end{array}
\end{aligned}
\] & 100 \\
\hline SP163 & IQGC1* & Current loop gain magnification 1 for cutting on Caxis & Set the magnification of current loop gain (torque component) for C -axis cutting. & \[
\begin{aligned}
& 1 \text { to } 1000 \\
& \text { (\%) }
\end{aligned}
\] & 100 \\
\hline SP164 & IDGC1* & Current loop gain magnification 2 for cutting on Caxis & Set the magnification of current loop gain (excitation component) for C -axis cutting. & \[
\begin{array}{|l}
\hline 1 \text { to } 1000 \\
\text { (\%) }
\end{array}
\] & 100 \\
\hline SP165 & PG2C & C-axis position loop gain 2 & \begin{tabular}{l}
Set the second position loop gain when high-gain control is carried out for control of the C-axis. This parameter is applied to all the operation modes of C -axis control. \\
When this function is not used, assign " 0 ".
\end{tabular} & \[
\begin{aligned}
& \begin{array}{l}
0 \text { to } 999 \\
(1 / s)
\end{array}
\end{aligned}
\] & 0 \\
\hline SP166 & PG3C & C-axis position loop gain 3 & \begin{tabular}{l}
Set the third position loop gain when high-gain control is carried out for control of the C-axis. This parameter is applied to all the operation modes of C -axis control. \\
When this function is not used, assign " 0 ".
\end{tabular} & \[
\begin{aligned}
& \begin{array}{l}
0 \text { to } 999 \\
(1 / s)
\end{array} \\
& \hline
\end{aligned}
\] & 0 \\
\hline SP167 & PGU* & Position loop gain for increased spindle holding force & Set the position loop gain for when the disturbance observer is valid. & \[
\begin{aligned}
& \begin{array}{l}
0 \text { to } 100 \\
(1 / \mathrm{s})
\end{array}
\end{aligned}
\] & 15 \\
\hline SP168 & VGUP* & Speed loop gain proportional item for increased spindle holding force & Set the speed loop gain proportional item for when the disturbance observer is valid. & \[
\begin{array}{|l}
\hline 0 \text { to } 5000 \\
(1 / \mathrm{s})
\end{array}
\] & 63 \\
\hline SP169 & VGU** & Speed loop gain integral item for increased spindle holding force & Set the speed loop gain integral item for when the disturbance observer is valid. & \[
\begin{aligned}
& \hline 0 \text { to } 5000 \\
& (0.1 \mathrm{1} / \mathrm{s})
\end{aligned}
\] & 60 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & \multicolumn{7}{|c|}{Details} & Setting range (Unit) & Standard setting \\
\hline SP170 & VGUD* & Speed loop gain delay advance item for increased spindle holding force & \multicolumn{7}{|l|}{Set the speed loop gain delay advance item for when the disturbance observer is valid.} & \[
\begin{array}{|l|}
\hline 0 \text { to } 5000 \\
(0.1 \mathrm{1} / \mathrm{s})
\end{array}
\] & 15 \\
\hline \[
\begin{array}{|c|}
\hline \text { SP171 } \\
\text { to } \\
\text { SP176 }
\end{array}
\] & & & \multicolumn{7}{|l|}{Not used. Set to "0".} & 0 & 0 \\
\hline SP177 & SPECS* & Spindle synchronous specifications & Set units & \begin{tabular}{l}
he spin \\
\hline
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& \text { ndle synct } \\
& \begin{array}{|c|c|}
\hline & D \\
\hline & \text { odx8 } \\
\hline & 5 \\
\hline & \text { fdir } \\
\hline
\end{array} \\
& \hline
\end{aligned}
\] \\
Always s \\
Meaning \\
Closed loop Interpolation
compensa \\
Normal ex \\
Position d polarity (+ \\
Magnification excessive
8 times inv \\
8 times inv \\
(Used with
\end{tabular} & \begin{tabular}{l}
s spe \\
B \\
3 \\
pyfx \\
for the \\
to 0 \\
lid \\
dth \(\times\)
\end{tabular} & \begin{tabular}{l}
cifica \\
A
\(\qquad\) \\
Magnif excessiv
8 times 8 times
\end{tabular} & ns in 9 \(\frac{1}{\text { adin }}\) bits. when sed loop sation va loop exc ong) -) & \begin{tabular}{|c|}
\hline \multicolumn{1}{c}{\begin{tabular}{l}
bit \\
8 \\
\hline fclx \\
\hline
\end{tabular}} \\
\hline \\
\hline
\end{tabular} & 0000 to
FFFF
HEX setting & 0000 \\
\hline SP178 & VGSP* & Spindle synchronous speed loop gain proportional term & \multicolumn{7}{|l|}{Set the speed loop proportional gain in spindle synchronous mode.} & \[
\begin{array}{|l}
\hline 0 \text { to } 1000 \\
(1 / s)
\end{array}
\] & 63 \\
\hline SP179 & VGSI* & Spindle synchronous speed loop gain integral term & \multicolumn{7}{|l|}{Set the speed loop integral gain in spindle synchronous mode.} & \[
\begin{array}{|l|}
\hline 0 \text { to } 1000 \\
(0.11 / \mathrm{s})
\end{array}
\] & 60 \\
\hline SP180 & VGSD* & Spindle synchronous speed loop gain delay advance term & \multicolumn{7}{|l|}{Set the speed loop delay advance gain in spindle synchronous mode. When this parameter is set to " 0 ", PI control is applied.} & \[
\begin{array}{|l|}
\hline 0 \text { to } 1000 \\
(0.11 / \mathrm{s})
\end{array}
\] & 15 \\
\hline SP181 & VCGS* & Spindle synchronous target value of variable speed loop proportional gain & \multicolumn{7}{|l|}{Set the magnification of speed loop proportional gain with respect to SP178 (VGSP) at the maximum speed defined in SP017 (TSP) in spindle synchronous mode.} & 0 to 100 (\%) & 100 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & Details & Setting range (Unit) & Standard setting \\
\hline SP182 & VCSS* & Spindle synchronous change starting speed of variable speed loop proportional gain & Set the speed when the speed loop proportional gain change starts in the spindle synchronous mode. & \[
\begin{aligned}
& 0 \text { to } 32767 \\
& \text { (r/min) }
\end{aligned}
\] & 0 \\
\hline SP183 & SYNV & Spindle synchronous sync matching speed & For changeover from the speed loop to the position loop in the spindle synchronous mode, set a speed command error range for output of the synchronous speed matching signal. & \[
\begin{aligned}
& 0 \text { to } 1000 \\
& (\mathrm{r} / \mathrm{min})
\end{aligned}
\] & 20 \\
\hline SP184 & FFCS* & Spindle synchronous acceleration rate feed forward gain & \begin{tabular}{l}
Set the acceleration rate feed forward gain in the spindle synchronous mode. \\
This parameter is used only with the SPJ2.
\end{tabular} & \[
\begin{aligned}
& \text { 0 to } 1000 \\
& \text { (\%) }
\end{aligned}
\] & 0 \\
\hline SP185 & SINP & Spindle synchronous in-position width & Set the position error range for output of the in-position signal in the spindle synchronous mode. & \[
\begin{aligned}
& \hline 1 \text { to } 2880 \\
& \left(1 / 16^{\circ}\right)
\end{aligned}
\] & 16 \\
\hline SP186 & SODR* & Spindle synchronous excessive error width & Set the excessive error width in the spindle synchronous mode. & \[
\begin{aligned}
& \hline 1 \text { to } 32767 \\
& \text { (pulse) } \\
& (1 \text { pulse } \\
& \left.=0.088^{\circ}\right)
\end{aligned}
\] & 32767 \\
\hline SP187 & IQGS* & Spindle synchronous current loop gain magnification1 & Set the magnification of current loop gain (torque component) in the spindle synchronous mode. & \[
\begin{aligned}
& 1 \text { to } 1000 \\
& \text { (\%) }
\end{aligned}
\] & 100 \\
\hline SP188 & IDGS* & Spindle synchronous current loop gain magnification 2 & Set the magnification of current loop gain (excitation component) in the spindle synchronous mode. & \[
\begin{aligned}
& 1 \text { to } 1000 \\
& (\%)
\end{aligned}
\] & 100 \\
\hline SP189 & PG2S & Spindle synchronous position loop gain 2 & \begin{tabular}{l}
Set the second position loop gain when high-gain control is carried out in the spindle synchronous mode. \\
When this parameter function is not used, set to "0".
\end{tabular} & \[
\begin{aligned}
& \hline 0 \text { to } 999 \\
& (1 / \mathrm{s})
\end{aligned}
\] & 0 \\
\hline SP190 & PG3S & Spindle synchronous position loop gain 3 & \begin{tabular}{l}
Set the third position loop gain when high-gain control is carried out in the spindle synchronous mode. \\
When this parameter function is not used, set to "0".
\end{tabular} & \[
\begin{aligned}
& \begin{array}{l}
0 \text { to } 999 \\
(1 / \mathrm{s})
\end{array}
\end{aligned}
\] & 0 \\
\hline \[
\begin{array}{|l}
\hline \text { SP191 } \\
\text { to } \\
\text { SP192 }
\end{array}
\] & & & Not used. Set to "0". & 0 & 0 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & Details & Setting range (Unit) & Standard setting \\
\hline SP199 & VCST** & Synchronized tapping change starting speed of variable speed loop proportional gain & Set the speed where the speed loop proportional gain change starts during synchronized tapping. & \[
\begin{array}{|l|}
\hline 0 \text { to } 32767 \\
(\mathrm{r} / \mathrm{min})
\end{array}
\] & 0 \\
\hline SP200 & FFC1* & Synchronized tapping acceleration feed forward gain (gear 1) & \begin{tabular}{l}
Set the acceleration feed forward gain for selection of gear 000 at synchronized tapping. \\
This parameter should be used when an error of relative position to Z -axis servo is large.
\end{tabular} & \[
\begin{aligned}
& 0 \text { to } 1000 \\
& (\%)
\end{aligned}
\] & 0 \\
\hline SP201 & FFC2* & Synchronized tapping acceleration feed forward gain (gear 2) & Set the acceleration feed forward gain for selection of gear 001 at synchronized tapping. & \[
\begin{aligned}
& 0 \text { to } 1000 \\
& (\%)
\end{aligned}
\] & 0 \\
\hline SP202 & FFC3* & Synchronized tapping acceleration feed forward gain (gear 3) & Set the acceleration feed forward gain for selection of gear 010 at synchronized tapping. & \[
\begin{aligned}
& 0 \text { to } 1000 \\
& (\%)
\end{aligned}
\] & 0 \\
\hline SP203 & FFC4* & Synchronized tapping acceleration feed forward gain (gear 4) & Set the acceleration feed forward gain for selection of gear 011 at synchronized tapping. & \[
\begin{aligned}
& 0 \text { to } 1000 \\
& (\%)
\end{aligned}
\] & 0 \\
\hline \[
\begin{array}{|l|}
\hline \text { SP204 } \\
\text { to } \\
\text { SP213 }
\end{array}
\] & & & Not used. Set "0". & 0 & 0 \\
\hline SP214 & TZRN & Synchronized tapping zero point return speed & \begin{tabular}{l}
This parameter is valid when SP193 (SPECT) bitE is set to " 0 ". \\
Set the zero point return speed used when the speed loop changes to the position loop.
\end{tabular} & \[
0 \text { to } 500
\] (r/min) & 50 \\
\hline SP215 & TPDT & Synchronized tapping zero point return deceleration rate & \begin{tabular}{l}
This parameter is valid when SP193 (SPECT) bitE is set to "0". \\
Set the deceleration rate where the machine starts to decelerate when it returns to the target stop point during synchronized tapping zero point return. When the machine tends to overshoot at the stop point set a smaller value.
\end{tabular} & \[
\begin{array}{|l|}
\hline 0 \text { to } 10000 \\
\text { (pulse) }
\end{array}
\] & 1 \\
\hline SP216 & TPST & Synchronized tapping zero point return shift amount & \begin{tabular}{l}
This parameter is valid when SP193 (SPECT) bitE is set to "0". \\
Set the synchronized tapping zero point position.
\end{tabular} & 0 to 4095 & 0 \\
\hline SP217 & TINP & Synchronized tapping in-position width & Set the position error range for output of the in-position signal during synchronized tapping. & \[
\begin{array}{|l}
\hline 1 \text { to } 2880 \\
\left(1 / 16^{\circ}\right)
\end{array}
\] & 16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & Details & Setting range & Standard setting \\
\hline SP218 & TODR* & Synchronized tapping excessive error width & Set the excessive error width during synchronized tapping. & ```
1 to 32767
(pulse)
(1 pulse
 =0.088`)
``` & 32767 \\
\hline SP219 & IQGT* & Synchronized tapping current loop gain magnification 1 & Set the magnification of current loop gain (torque component) during synchronized tapping. & \[
\begin{array}{|l}
\hline 1 \text { to } 1000 \\
\text { (\%) }
\end{array}
\] & 100 \\
\hline SP220 & IDGT* & Synchronized tapping current loop gain magnification 2 & Set the magnification of current loop gain (excitation component) during synchronized tapping. & \[
\begin{array}{|l|}
\hline 1 \text { to } 1000 \\
\text { (\%) }
\end{array}
\] & 100 \\
\hline SP221 & PG2T & Synchronized tapping position loop gain 2 & Set the second position loop gain when high-gain control is applied during synchronized tapping. When this parameter is not used, set to " 0 ". & \[
\begin{aligned}
& \begin{array}{l}
0 \text { to } 999 \\
(1 / s)
\end{array} \\
& \hline
\end{aligned}
\] & 0 \\
\hline SP222 & PG3T & Synchronized tapping position loop gain 3 & Set the third position loop gain when high-gain control is applied during synchronized tapping. When this parameter is not used, set to " 0 ". & \[
\begin{aligned}
& \hline 0 \text { to } 999 \\
& (1 / \mathrm{s})
\end{aligned}
\] & 0 \\
\hline \[
\begin{array}{|l|}
\hline \mathrm{SP} 223 \\
\text { to } \\
\mathrm{SP} 224
\end{array}
\] & & & Not used. Set to "0". & 0 & 0 \\
\hline SP225 & OXKPH & \multirow[t]{8}{*}{Fixed control constant} & \multirow[t]{8}{*}{Set by Mitsubishi. Set "0" unless designated in particular.} & \multirow[t]{8}{*}{0} & \multirow[t]{8}{*}{0} \\
\hline SP226 & OXKPL & & & & \\
\hline SP227 & OXVKP & & & & \\
\hline SP228 & OXVKI & & & & \\
\hline SP229 & OXSFT & & & & \\
\hline SP230 & & & & & \\
\hline SP231 & & & & & \\
\hline SP232 & & & & & \\
\hline SP233 & JL* & Disturbance observer general inertia scale & \begin{tabular}{l}
Set the ratio of the motor inertia + load inertia and motor inertia.
\[
\begin{aligned}
& \text { Setting } \\
& \text { value }
\end{aligned}=\frac{\text { Motor inertia }+ \text { load inertia }}{\text { Motor inertia }} \times 100
\] \\
(Normally, set " 0 ", " 100 " or more. When less than " 50 " is set, the setting will be invalid.)
\end{tabular} & \begin{tabular}{l}
0 to 5000 \\
(\%) \\
"0", "100" or more
\end{tabular} & 0 \\
\hline SP234 & OBS1* & Disturbance observer low path filter frequency & \begin{tabular}{l}
Set the frequency of the low path filter for when the disturbance observer is valid. \\
Setting (1/s) \(=2 \pi f\) \\
f: Approx. 1.5 times the disturbance frequency
\end{tabular} & \[
\begin{array}{|l|}
\hline 0 \text { to } 1000 \\
(1 / s)
\end{array}
\] & 0 \\
\hline SP235 & OBS2* & Disturbance observer gain & Set the gain for the disturbance observer. & 0 to 500 (\%) & 0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & Details & Setting range (Unit) & Standard setting \\
\hline \[
\begin{array}{|l|}
\hline \text { SP236 } \\
\text { to } \\
\text { SP248 }
\end{array}
\] & & & Not used. Set to "0". & 0 & 0 \\
\hline SP249 & SM0 & Speed meter speed & \begin{tabular}{l}
Set the motor rotation speed when the speed meter 10 V is output. \\
When set to " 0 ", this parameter becomes the same as SP017 (TSP).
\end{tabular} & \[
\begin{array}{|l|}
\hline 0 \text { to } 32767 \\
(\mathrm{r} / \mathrm{min})
\end{array}
\] & 0 \\
\hline SP250 & LM0 & Load meter voltage & Set the voltage when the load meter \(120 \%\) is output. When set to " 0 ", this becomes 10 V . & \[
\begin{aligned}
& \hline 0 \text { to } 10 \\
& \text { (V) }
\end{aligned}
\] & 0 \\
\hline \[
\begin{array}{|c|}
\hline \text { SP251 } \\
\text { to } \\
\text { SP252 }
\end{array}
\] & & & Not used. Set to "0". & 0 & 0 \\
\hline SP253 & DA1NO & D/A output channel 1 data number & \begin{tabular}{l}
Set the output data number for channel 1 of the D/A output function. \\
When this parameter is set to " 0 ", the output is speedometer. \\
Refer to "3.2 (2) D/A output functions".
\end{tabular} & \[
\begin{array}{|l}
\hline-32768 \text { to } \\
32767
\end{array}
\] & 0 \\
\hline SP254 & DA2NO & D/A output channel 2 data number & \begin{tabular}{l}
Set the output data number for channel 2 of the D/A output function. \\
When this parameter is set to " 0 ", the output is load meter. \\
Refer to "3.2 (2) D/A output functions".
\end{tabular} & \[
\begin{aligned}
& \hline-32768 \text { to } \\
& 32767
\end{aligned}
\] & 0 \\
\hline SP255 & DA1MPY & D/A output channel 1 magnification & \begin{tabular}{l}
Set the data magnification for channel 1 of the D/A output function. \\
The output magnification is the setting value divided by 256. \\
When this parameter is set to " 0 ", the output magnification becomes 1 -fold, in the same manner as when " 256 " is set. \\
Refer to "3.2 (2) D/A output functions".
\end{tabular} & \[
\begin{array}{|l|}
\hline-32768 \text { to } \\
32767 \\
(1 / 256 \text {-fold })
\end{array}
\] & 0 \\
\hline SP256 & DA2MPY & D/A output channel 2 magnification & \begin{tabular}{l}
Set the data magnification for channel 2 of the D/A output function. \\
The output magnification is the setting value divided by 256. \\
When this parameter is set to " 0 ", the output magnification becomes 1 -fold, in the same manner as when " 256 " is set. \\
Refer to "3.2 (2) D/A output functions".
\end{tabular} & \[
\begin{aligned}
& \hline-32768 \text { to } \\
& 32767 \\
& (1 / 256 \text {-fold })
\end{aligned}
\] & 0 \\
\hline \[
\begin{array}{|l|}
\hline \text { SP257 } \\
\text { to } \\
\text { SP320 }
\end{array}
\] & RPM* & Motor constant (H coil) & \begin{tabular}{l}
This parameter is valid only in the following two conditional cases: \\
(a) In case that SP034 (SFNC2) bit0=1 and SP034 (SFNC2) bit2=0 \\
Set the motor constants when using a special motor, not described in the SP040 (MTYP) explanation and when not using the coil changeover motor. \\
(b) In case that SP034 (SFNC2) bit0=1 and SP034 (SFNC2) bit2=1 \\
Set the motor constant of the H coil of the coil changeover motor. \\
(Note) It is not allowed for the user to change the setting.
\end{tabular} & \[
\begin{aligned}
& \hline 0000 \text { to } \\
& \text { FFFF } \\
& \text { HEX setting }
\end{aligned}
\] & 0000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Items} & Details & Setting range (Unit) & Standard setting \\
\hline \[
\begin{array}{|c|}
\hline \text { SP321 } \\
\text { to } \\
\text { SP384 }
\end{array}
\] & RPML* & Motor constant (L coil) & \begin{tabular}{l}
This parameter is valid only in the following conditional case: \\
(a) In case that SP034 (SFNC2) bit0=1 and SP034 (SFNC2) bit2=1 \\
Set the motor constant of the \(L\) coil of the coil changeover motor. \\
(Note) It is not allowed for the user to change the setting.
\end{tabular} & \[
\begin{aligned}
& 0000 \text { to } \\
& \text { FFFF } \\
& \text { HEX setting }
\end{aligned}
\] & 0000 \\
\hline \[
\begin{array}{|c|}
\hline \text { SP385 } \\
\text { to } \\
\text { SP400 }
\end{array}
\] & & Fixed control constant & Not used. Set to "0". & 0 & 0 \\
\hline
\end{tabular}
(2) \(\mathrm{D} / \mathrm{A}\) output functions
(a) Outline

The D/A output function is mounted in the standard system in the MDS-C1-SP.
Using this D/A output function, the drive unit status and each data can be confirmed.
(b) Hardware specifications
- 2 channels
- 8 bit 0 to +10 V
- Output pin CH 1: CN9-9 pin

CH 2: CN9-19 pin
GND: CN9-1.11 pin
(c) Parameters

Set the data No. and output magnification of each channel according to the parameters below.
\begin{tabular}{|l|l|}
\hline Name & \multicolumn{1}{|c|}{ Details } \\
\hline SP253 & D/A channel 1 data No. \\
\hline SP254 & D/A channel 2 data No. \\
\hline SP255 & D/A channel 1 output magnification \\
\hline SP256 & D/A channel 2 output magnification \\
\hline
\end{tabular}
(d) Output data No.

Set the No. of the data to be output in SP253 and SP254. A correlation of the output data and the data No. is shown below.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{No. (setting value)} & \multicolumn{2}{|r|}{CH1} & \multicolumn{2}{|c|}{CH2} \\
\hline & Output data & Units & Output data & Units \\
\hline 0 & Speedometer output & Maximum speed at 10V & Load meter output & \[
\begin{aligned}
& 120 \% \text { load } \\
& \text { at } 10 \mathrm{~V}
\end{aligned}
\] \\
\hline 2 & Current command & When the actual data is 4096 , the current command data is regarded as \(100 \%\). & \multicolumn{2}{|r|}{\multirow{19}{*}{Same as CH1}} \\
\hline 3 & Current feedback & When the actual data is 4096 , the current feedback data is regarded as \(100 \%\). & & \\
\hline 4 & Speed feedback & Actual data r/min & & \\
\hline 6 & Position droop low -order & Interpolation units & & \\
\hline 7 & Position droop high-order & When the actual data is 23040000 , the position droop data is regarded as \(360^{\circ}\). & & \\
\hline 8 & Position F \(\triangle\) T low-order & Interpolation units/NC communication cycle & & \\
\hline 9 & Position \(\mathrm{F} \triangle \mathrm{T}\) high-order & & & \\
\hline 10 & Position command low-order & Interpolation units & & \\
\hline 11 & Position command high-order & When the actual data is 23040000 , the position command data is regarded as \(360^{\circ}\). & & \\
\hline 12 & Feedback position low -order & Interpolation units & & \\
\hline 13 & Feedback position high-order & When the actual data is 23040000 , the feedback position data is regarded as \(360^{\circ}\). & & \\
\hline 80 & Control input 1 & Bit correspondence & & \\
\hline 81 & Control input 2 & & & \\
\hline 82 & Control input 3 & & & \\
\hline 83 & Control input 4 & & & \\
\hline 84 & Control output 1 & \multirow[t]{4}{*}{Bit correspondence} & & \\
\hline 85 & Control output 2 & & & \\
\hline 86 & Control output 3 & & & \\
\hline 87 & Control output 4 & & & \\
\hline
\end{tabular}
(Note) The \% of the current command and current feedback indicate 30 min . rating \(=100 \%\).
(e) Setting the output magnification

Set the output magnification in SP255 and SP256.
DATA \(=\) actual data \(\times \frac{\text { SP255 or SP256 }}{256}\)

Using the expression above,
(i) Output data other than speedometer output and load meter output carries out the D/A output in Fig. 1.
(ii) Speedometer output data and load meter output data carries out the D/A output in Fig. 2.


Fig. 1

D/A output voltage


Fig. 2
(Example 1) Current command, current feedback
The data is regarded as \(100 \%\) when the actual data is 4096 .
Therefore, for example, the actual data is output as shown below during \(+120 \%\) current feedback.
\[
\text { Actual data }=4096 \times 1.2=4915
\]

If " 256 " is set (magnification 1) in parameter SP255 (SP256), from Fig.1, the D/A output voltage will be as shown below, exceeding the D/A output voltage maximum value.
\[
5 \mathrm{~V}+\{4915 \times 1 \times(5 \mathrm{~V} / 128)\}=197 \mathrm{~V}>10 \mathrm{~V}
\]

Therefore, if " 6 " is set in parameter SP255 (SP256), the D/A output voltage will become as shown below, and data confirmation will be possible.
\[
5 \mathrm{~V}+\{4915 \times 6 / 256 \times(5 \mathrm{~V} / 128)\}=9.5 \mathrm{~V}<10 \mathrm{~V}
\]
(Example 2) Speed feedback
Data unit is \(\mathrm{r} / \mathrm{min}\).
Therefore, at \(+2000 \mathrm{r} / \mathrm{min}\), the motor speed will be output as "2000".
If "256" (magnification 1) is set in parameter SP255 (SP256), from Fig.1, the D/A output voltage will be as shown below, exceeding the D/A output voltage maximum value.
\[
5 \mathrm{~V}+\{2000 \times 1 \times(5 \mathrm{~V} / 128)\}=83.125 \mathrm{~V}>10 \mathrm{~V}
\]

Therefore, if "16" is set in parameter SP255 (SP256), the D/A output voltage will become as shown below, and data confirmation will be possible.
\[
5 \mathrm{~V}+\{2000 \times 16 / 256 \times(5 \mathrm{~V} / 128)\}=9.88 \mathrm{~V}<10 \mathrm{~V}
\]
(Example 3) Position droop
The data unit is \(\mathrm{r} / \mathrm{min}\). Data is regarded as \(100 \%\) when the actual data is 4096 .
Therefore, for example, the actual data is output as shown below during the \(+0.1^{\circ}\) position droop.
\[
\text { Actual data }=0.1 \times 23040000 / 360=6400
\]

If "256" (magnification 1) is set in parameter SP255 (SP256), from Fig.1, the D/A output voltage will be as shown below, exceeding the D/A output voltage maximum value.
\[
5 \mathrm{~V}+\{6400 \times 1 \times(5 \mathrm{~V} / 128)\}=255 \mathrm{~V}>10 \mathrm{~V}
\]

Therefore, if " 5 " is set in parameter SP255 (SP256), the D/A output voltage will become as shown below, and data confirmation will be possible.
\[
5 \mathrm{~V}+\{2000 \times 5 / 256 \times(5 \mathrm{~V} / 128)\}=9.88 \mathrm{~V}<10 \mathrm{~V}
\]
(Example 4) Confirm the orientation complete signal (ORCF) with the control output 4L.
The data unit is bit corresponding data.
Refer to the Instruction Manual for the meanings of the control output 4L bit corresponding signals.
The orientation complete signal (ORCF) corresponds to the control output 4L/bit 4.
Therefore, for example, the actual data is output as shown below when ORCF=ON.
bit \(\mathbf{4}\) corresponding actual data \(=\mathbf{2}^{\mathbf{4}}=\mathbf{1 6}\)
If "256" is (magnification 1) set in parameter SP255 (SP256), from Fig.1, the D/A output voltage will be as shown below, and data confirmation will be possible.
\[
5 \mathrm{~V}+\{16 \times 1 \times(5 \mathrm{~V} / 128)\}=5.625 \mathrm{~V}<10 \mathrm{~V}
\]

Note that, if bits other than bit4 are ON, the current of that bit will be added to the 5.625 V shown above, and at the actual ORCF signal measurement will be as shown below, so confirm the changed voltage.
\[
(5.625 \mathrm{~V}-5 \mathrm{~V})=0.625 \mathrm{~V}
\]

\subsection*{3.3 Spindle specification parameters screen}

The spindle parameters are divided into those transmitted to the spindle drive unit from the NC and those used on the NC side.
(1) Parameters transmitted to the spindle drive unit from the NC

The 384 parameters shown in section "3.2.(1)" are those transmitted from the NC to the spindle drive unit.
(2) Parameters used on NC side

The spindle specifications parameters shown on this page are used on the NC side.
For parameters indicated with an " \(*\) " in the table, turn the CNC power OFF after setting. The setting is validated after the power is turned ON again.
In the bit explanation below, set all bits not used, including empty bits, to "0".
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & \multicolumn{3}{|r|}{Items} & Details & Setting range (Unit) \\
\hline 1 & Sp_ax num * & & Axis No. & Set the spindle control axis number. (When using analog spindle, set to " 0 ". & 0 to max. number of control axes \\
\hline 2 & Slimit & & Limit rotation speed Gear 00 & \multirow[t]{4}{*}{\begin{tabular}{l}
Set spindle rotation speed for maximum motor rotation speed with gears \(00,01,10,11\). \\
(Set the spindle rotation speed for the S analog output 10V.)
\end{tabular}} & \multirow[t]{4}{*}{0 to 99999 (r/min)} \\
\hline 3 & Slimit & & Limit rotation speed Gear 01 & & \\
\hline 4 & Slimit & & Limit rotation speed Gear 10 & & \\
\hline 5 & Slimit & & Limit rotation speed Gear 11 & & \\
\hline 6 & Smax & & Maximum rotation speed Gear 00 & \multirow[t]{4}{*}{\begin{tabular}{l}
Set maximum spindle rotation speed with gears 00, 01, 10, 11. \\
Set the value that is equal to or larger than "Slimit" value.
\end{tabular}} & \multirow[t]{4}{*}{0 to 99999 (r/min)} \\
\hline 7 & Smax & & Maximum rotation speed Gear 01 & & \\
\hline 8 & Smax & & Maximum rotation speed Gear 10 & & \\
\hline 9 & Smax & & Maximum rotation speed Gear 11 & & \\
\hline 10 & Ssift & & Shift rotation speed Gear 00 & \multirow[t]{4}{*}{Set spindle rotation speed for gear shifting with gears 00, 01, 10, 11.} & \multirow[t]{4}{*}{0 to 32767 (r/min)} \\
\hline 11 & Ssift & & Shift rotation speed Gear 01 & & \\
\hline 12 & Ssift & & Shift rotation speed Gear 10 & & \\
\hline 13 & Ssift & & Shift rotation speed Gear 11 & & \\
\hline 14 & Stap & & Tap rotation speed Gear 00 & \multirow[t]{4}{*}{Set maximum spindle rotation speed during tap cycle with gears \(00,01,10,11\).} & \multirow[t]{4}{*}{0 to 999999 (r/min)} \\
\hline 15 & Stap & & Tap rotation speed Gear 01 & & \\
\hline 16 & Stap & & Tap rotation speed Gear 10 & & \\
\hline 17 & Stap & & Tap rotation speed Gear 11 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline No. & \multicolumn{2}{|r|}{Items} & Details & Setting range (Unit) \\
\hline 18 & Stapt 1 & Tap time constant Gear 00 & \multirow[t]{4}{*}{Set time constants for constant inclination synchronized tapping for gears \(00,01,10,11\).} & \multirow[t]{4}{*}{1 to 5000 (ms)} \\
\hline 19 & Stapt 2 & Tap time constant Gear 01 & & \\
\hline 20 & Stapt 3 & Tap time constant Gear 10 & & \\
\hline 21 & Stapt 4 & Tap time constant Gear 11 & & \\
\hline
\end{tabular}

Relationship between spindle limit rotation speed and maximum spindle rotation speed


Relation between the spindle limit rotation speed and the spindle tap time constant (for the constant inclination synchronized tapping)


\begin{tabular}{|c|l|l|l|l|}
\hline No. & \multicolumn{1}{c|}{ Items } & Details & Setting range (unit) \\
\hline 22 & Sori & \begin{tabular}{l} 
Orientation rotation \\
speed
\end{tabular} & \begin{tabular}{l} 
Set the spindle orientation rotation speed. \\
Set the rotation speed for rotating the spindle at \\
the constant rotation speed.
\end{tabular} & 0 to 32767 (r/min) \\
\hline 23 & Sgear & Encoder gear ratio & Set the gear ratio of the spindle to the encoder. & \(0: 1 / 1\) \\
\(1: 1 / 2\) \\
\(2: 1 / 4\) \\
\(3: 1 / 8\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline No. & \multicolumn{2}{|r|}{Items} & Details & Setting range (unit) \\
\hline 30 & Sana_ofs & Offset for spindle analog output adjustment & \begin{tabular}{l}
Set the offset voltage for spindle analog output. \\
<Adjustment method > \\
1) Command the spindle speed "0" with \(S\) command. \\
2) Measure the output voltage of the designated port. \\
3) Set the value obtained in the following equation to this parameter. \\
Set value \(=-8191 \times\) Offset voltage (V)/10.56 \\
4) After setting this parameter, confirm that the output voltage is " 0 V " again.
\end{tabular} & -4095 to 4095 \\
\hline 31 & Sana_gin & Gain for spindle analog output adjustment & \begin{tabular}{l}
Set the data for gain adjustment for analog output. \\
<Adjustment method > \\
1) Set the standard set value " 4095 " to the No. of the designated file register R. \\
2) Measure the output voltage of the designated port. \\
3) Set the value obtained in the following equation to this parameter. \\
Set value \(=\) Proper voltage (V)/ Measured voltage (V) \(\times 4096\) \\
4) After setting this parameter, confirm that the output voltage is " 10.0 V " again.
\end{tabular} & 0 to 9999 \\
\hline
\end{tabular}

\subsection*{3.4 Spindle monitor screen}

The current state of the spindle can be confirmed on the NC screen.
The monitor screen is shown on this page.

\section*{[SPINDLE MONITOR]}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline GAIN & (1/s) & 0 & D/I & 1 L & 00000000 & UNIT TYP & 00000000 \\
\hline DROOP & (i) & 160 & & H & 00000000 & UNIT NO & 00000000 \\
\hline SPEED & (r/min) & 0 & & 2 L & 00000000 & S/W VER & 00000000 \\
\hline LOAD & (\%) & 0 & & H & 00000000 & 1 WORK TIME & 00000000 \\
\hline AMP DIS & & D4 & & 3L & 00000000 & 2 ALM HIST 1 & 00000000 \\
\hline ALARM & & & & H & 00000000 & 2 & 00000000 \\
\hline \multirow[t]{11}{*}{CYC CNT} & & -10240 & & 4L & 00000000 & 3 & 00000000 \\
\hline & & & & H & 00000000 & 4 & 00000000 \\
\hline & & & & & & 5 & 00000000 \\
\hline & & & D/O & 1L & 00000000 & 6 & 00000000 \\
\hline & & & & H & 00000000 & 7 & 00000000 \\
\hline & & & & 2 L & 00000000 & 8 & 00000000 \\
\hline & & & & H & 00000000 & & \\
\hline & & & & 3L & 00000000 & MNT & 00000000 \\
\hline & & & & H & 00000000 & /SYS & 00000000 \\
\hline & & & & 4L & 00000000 & & \\
\hline & & & & H & 00000000 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Data & Unit & Display details \\
\hline GAIN & 1/s & The position loop gain during operation of the spindle with the position command is display ed. \\
\hline DROOP & pulse & The position deflection during operation of the spindle with the position command is displayed. \\
\hline SPEED & \(\mathrm{r} / \mathrm{min}\) & The motor rotation speed is displayed. \\
\hline LOAD & \% & The motor load (load ratio) is displayed. The 30 min . rating is \(100 \%\). \\
\hline AMP DISP & & The data of the 7-segment LED display for the spindle drive unit is displayed. \\
\hline ALARM & & The alarm No. is displayed when an alarm other than that displayed on the spindle drive unit's 7-segment LED. \\
\hline CYC CNT & & The current position from the position detector's reference position (Z-phase) when operating the spindle with the position command is displayed. \\
\hline \[
\begin{array}{r}
\mathrm{D} / \mathrm{IL} \\
\mathrm{H}
\end{array}
\] & & The control input signal 1 input from the NC to the spindle drive unit is displayed in correspondence to the bits. (Refer to section "(1-1)" for details.) \\
\hline \[
\begin{array}{r}
\mathrm{D} / \mathrm{I} 2 \mathrm{~L} \\
\mathrm{H}
\end{array}
\] & & Same as above (control input signal 2) \\
\hline \[
\begin{array}{r}
\mathrm{D} / \mathrm{IL} \\
\mathrm{H}
\end{array}
\] & & Same as above (control input signal 3) \\
\hline \[
\begin{array}{r}
\mathrm{D} / \mathrm{I} 4 \mathrm{~L} \\
\mathrm{H}
\end{array}
\] & & Same as above (control input signal 4) \\
\hline \[
\begin{array}{r}
\hline \mathrm{D} / \mathrm{O} 1 \mathrm{~L} \\
\mathrm{H}
\end{array}
\] & & The control output signal 1 output from the spindle drive unit to the \(N C\) is displayed in correspondence to the bits. (Refer to section "(2-1)" for details.) \\
\hline \[
\begin{array}{r}
\mathrm{D} / \mathrm{O} 2 \mathrm{~L} \\
\mathrm{H}
\end{array}
\] & & Same as above (control output signal 2) \\
\hline \[
\begin{array}{r}
\mathrm{D} / \mathrm{O} \text { 3L } \\
\mathrm{H}
\end{array}
\] & & Same as above (control output signal 3) \\
\hline \[
\begin{array}{r}
\mathrm{D} / \mathrm{O} 4 \mathrm{~L} \\
\mathrm{H}
\end{array}
\] & & Same as above (control output signal 4) \\
\hline UNIT TYP & & The spindle drive unit type is displayed. \\
\hline UNIT NO & & The spindle drive unit serial No. is displayed. \\
\hline S/W VER & & The main software version in the spindle drive unit is displayed. \\
\hline 1 WORK TIME & & The cumulative working time of the spindle drive unit is displayed. \\
\hline 2 ALM HIST 1~8 & & The alarm history is displayed. 1 is the latest alarm. \\
\hline
\end{tabular}

\section*{(1-1) D/I (Control input) 1L}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline F & E & D & C & B & A & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline G1 & & & & & TL3 & TL2 & TL1 & ALMR & PRM & & & & & SRV & RDY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline bit & Name & \\
\hline 0 & RDY & Ready ON command \\
\hline 1 & SRV & Servo ON command \\
\hline 2 & & \\
\hline 3 & & \\
\hline 4 & & \\
\hline 5 & & \\
\hline 6 & PRM & Parameter conversion command \\
\hline 7 & ALMR & Servo alarm reset command \\
\hline 8 & TL1 & Torque limit 1 \\
\hline 9 & TL2 & Torque limit 2 \\
\hline A & TL3 & Torque limit 3 \\
\hline B & & \\
\hline C & & \\
\hline D & & \\
\hline E & & \\
\hline F & G1 & Cutting \\
\hline
\end{tabular}

\section*{(1-2) D/I (Control input) 2L}

* Not used at this time.?

\section*{(1-3) D/I (Control input) 3L}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\multicolumn{1}{c}{ F } & E & D & C & B & A & \\
\hline & MS & LCS & ORC & WRI & WRN & SRI & SRN & GR3 & GR2 & GR1 & SC5 & SC4 & SC3 & SC2 & SC1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline bit & Name & \\
\hline 0 & SC1 & Spindle control mode selection command 1 \\
\hline 1 & SC2 & Spindle control mode selection command 2 \\
\hline 2 & SC3 & Spindle control mode selection command 3 \\
\hline 3 & SC4 & Spindle control mode selection command 4 \\
\hline 4 & SC5 & Spindle control mode selection command 5 \\
\hline 5 & GR1 & Gear selection command 1 \\
\hline 6 & GR2 & Gear selection command 2 \\
\hline 7 & GR3 & Gear selection command 3 \\
\hline 8 & SRN & Forward run start command \\
\hline 9 & SRI & Reverse run start command \\
\hline A & WRN & Index forward run command \\
\hline B & WRI & Index reverse run command \\
\hline C & ORC & Orientation start command \\
\hline D & LCS & L coil selection command (during coil changeover) \\
\hline E & MS & Sub-motor selection command (during 1-drive unit 2-motor changeover) \\
\hline F & & \\
\hline
\end{tabular}
(1-4) D/I (Control input) 4L
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline F & E & D & C & B & A & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
* Not used at this time.
(2-1) D/O (Control output) 1L
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\multicolumn{1}{c}{ F } & E & D & C & & \\
\hline & INP & ZFIN & & & TL3A & TL2A & TL1A & ALM & PRM & & & DWN & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline bit & Name & \\
\hline 0 & RON & In ready ON \\
\hline 1 & SON & In servo ON \\
\hline 2 & & \\
\hline 3 & & \\
\hline 4 & DWN & In drive unit warning \\
\hline 5 & & \\
\hline 6 & PRM & In parameter conversion \\
\hline 7 & ALM & In alarm \\
\hline 8 & TL1A & In torque limit 1 \\
\hline 9 & TL2A & In torque limit 2 \\
\hline A & TL3A & In torque limit 3 \\
\hline B & & \\
\hline C & & \\
\hline D & ZFIN & \\
\hline Z & Z-phase passed \\
\hline F & & \\
\hline
\end{tabular}
(2-2) D/O (Control output) 2L

* Not used at this time.

\section*{(2-3) D/O (Control output) 3L}

H
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\multicolumn{1}{c}{ F } & E & D & C & B & A & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline & MSA & LCSA & ORCA & WRIA & WRNA & SRIA & SRNA & GR3A & GR2A & GR1A & SC5A & SC4A & SC3A & SC2A & SC1A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline bit & Name & \\
\hline 0 & SC1A & In spindle control mode selection command 1 \\
\hline 1 & SC2A & In spindle control mode selection command 2 \\
\hline 2 & SC3A & In spindle control mode selection command 3 \\
\hline 3 & SC4A & In spindle control mode selection command 4 \\
\hline 4 & SC5A & In spindle control mode selection command 5 \\
\hline 5 & GR1A & In gear selection command 1 \\
\hline 6 & GR2A & In gear selection command 2 \\
\hline 7 & GR3A & In gear selection command 3 \\
\hline 8 & SRNA & In forward run start command \\
\hline 9 & SRIA & In reverse run start command \\
\hline A & WRNA & In index forward run command \\
\hline B & WRIA & In index reverse run command \\
\hline C & ORCA & In orientation start command \\
\hline D & LCSA & In L coil selection command (during coil changeover) \\
\hline E & MSA & In sub-motor selection command (during 1-drive unit 2-motor changeover) \\
\hline F & & \\
\hline
\end{tabular}

\section*{(2-4) D/O (Control output) 4L}

\section*{H}

\begin{tabular}{|c|c|l|}
\hline bit & Name & \\
\hline 0 & CD & Current detection \\
\hline 1 & SD & Speed detection \\
\hline 2 & US & Speed reached \\
\hline 3 & ZS & Zero speed \\
\hline 4 & ORCF & \\
\hline 5 & Orientation complete \\
\hline 6 & MKC & Synchronous speed match \\
\hline 7 & WRCF & \\
\hline 8 & & \\
\hline 9 & & \\
\hline A coil changeover positioning complete \\
\hline B & & \\
\hline C & & \\
\hline D & & \\
\hline E & & \\
\hline F & & \\
\hline
\end{tabular}

\subsection*{3.5 Control input signals}
(1) Speed command input

(a) When the speed command value is 0 , the motor speed will be 0 ; and when the speed command value is the maximum value, the motor speed will be the maximum motor speed set in parameter SP017 (TSP).
(b) The motor will forward run and reverse run with the forward run and reverse run start commands. (The motor will not rotate with only the speed command value.)

\section*{(2) Forward run start command (SRN)}
(a) When SRN is ON, the motor will run in the clockwise direction (CW) from the shaft side according to the commanded speed.
(b) When SRN is OFF, the motor will decelerate to a stop, the transistor base interception will be carried out and the motor will stop.
(c) The orientation movement will be a priority when the orientation command is input.
(3) Reverse run start command (SRI)
(a) When SRI is ON, the motor will run in the counterclockwise direction (CCW) from the shaft side according to the commanded speed.
(b) When SRI is OFF, the motor will decelerate to a stop, the transistor base interception will be carried out and the motor will stop.
(c) The orientation movement will be a priority when the orientation command is input.
(4) Torque limit 1, 2, 3 input (TL1, TL2, TL3)
(a) The torque limit will temporarily reduce the motor output torque during mechanical spindle orientation or gear shift, etc., and will rotate the motor.
(b) The following seven torque limit values can be used according to the combination of the TL1, TL2 and TL3 bit inputs.
\begin{tabular}{|c|c|c|c|}
\hline TL3 & TL2 & TL1 & Torque limit value \\
\hline 0 & 0 & 1 & Torque limit value (\%) set with parameter SP021 \\
\hline 0 & 1 & 0 & SP049 \\
\hline 0 & 1 & 1 & SP050 \\
\hline 1 & 0 & 0 & SP051 \\
\hline 1 & 0 & 1 & SP052 \\
\hline 1 & 1 & 0 & SP053 \\
\hline 1 & 1 & 1 & SP054 \\
\hline
\end{tabular}
(Note) \% indicates the percentage to the motor 30 min. rating torque.
(5) Orientation start command input (ORC)
(a) This is the orientation movement start signal. When ORC is ON, the orientation will start regardless of the operation command (SRN, SRI).
(b) When ORC is OFF, the motor will start rotating at the commanded speed again if either forward run (SRN) or reverse run (SRI) is input.
(c) The orientation movement will be a priority when the orientation command is input.
(6) Gear selection command 1, 2, 3 input (GR1, GR2, GR3)
(a) The spindle gear step for orientation movement or various position control movements is selected.
(b) The following eight gear steps can be selected according to the combination of the GR1, GR2 and GR3 3bit inputs.
(c) Do not change the signal while the orientation command or servo ON command is input.
\begin{tabular}{|c|c|c|c|}
\hline GR3 & GR2 & GR1 & Parameters used to set the gear ratio \\
\hline 0 & 0 & 0 & SP025 (GRA1), SP029 (GRB1) \\
\hline 0 & 0 & 1 & SP026 (GRA2), SP030 (GRB2) \\
\hline 0 & 1 & 0 & SP027 (GRA3), SP031 (GRB3) \\
\hline 0 & 1 & 1 & SP028 (GRA4), SP032 (GRB4) \\
\hline 1 & 0 & 0 & SP225 (GRA5), SP229 (GRB5) \\
\hline 1 & 0 & 1 & SP226 (GRA6), SP230 (GRB6) \\
\hline 1 & 1 & 0 & SP227 (GRA7), SP231 (GRB7) \\
\hline 1 & 1 & 1 & SP228 (GRA8), SP232 (GRB8) \\
\hline
\end{tabular}
(7) Index forward run command input (WRN), reverse run command input (WRI)
(a) This is the command input for forward run index or reverse run index during multipoint orientation. This will be valid only when the orientation start signal is ON.
(b) The forward run index will start from the CCW direction from the motor shaft end and the reverse run index will start from the CW direction.
(8) L coil selection command input (LCS)
(a) This is the command input signal for selecting the low-speed coil or high-speed coil when changing the coils.
(b) The high-speed coil is selected when LCS is OFF, and the low-speed coil is selected when LCS is ON.
(9) Sub-motor selection command input (MS)
(a) This is the command input signal for selecting the main spindle motor or sub general-purpose motor during the 1-drive unit 2-motor specifications changeover.
(b) The main motor is selected when MS is OFF, and the sub-motor is selected when MS is ON.
(10) Cutting input (G1)

This signal determines whether cutting is being performed during C -axis control.
The operation will be determined as cutting when G 1 is ON .
(11) Spindle control mode selection command 1, 2, 3, 4, 5 input (SC1, SC2, SC3, SC4, SC5)

The operation mode during spindle drive unit position control is selected with the bits. The selections shown below are used.
\(\left.\begin{array}{|c|c|c|c|c|c|}\hline \text { SC5 } & \text { SC4 } & \text { SC3 } & \text { SC2 } & \text { SC1 } & \text { Operation mode } \\ \hline 0 & 1 & 0 & 0 & 0 & \text { Synchronous tap operation mode } \\ 0 & 1 & 2 & & & \\ \hline 0 & 1 & 1 & 0 & 0 & \text { C-axis operation mode } \\ 0 & 1 & 2 & 1 & 1 & 1\end{array}\right]\)
(Note) The normal speed operation mode will be entered when bits other than the above are selected.

\subsection*{3.6 Control output signals}

\section*{(1) Zero speed output signal (ZS)}
(a) ZS will turn ON if the actual motor rotation speed drops below the zero speed detection point in regard to the stop command.
(b) The signal is output whether run command signal is SRN (forward run) or SRI (reverse run).
(c) The minimum output pulse width is about 200 ms .
(d) The zero speed detection speed is set with parameter SP018 (ZSP) in the range of 1 to \(1000 \mathrm{r} / \mathrm{min}\).

(2) Up-to-speed output signal (US)
(a) US will turn ON when the actual motor rotation speed reaches \(\pm 15 \%\) of the commanded speed.

(b) The signal is not output unless either SRN or SRI will turn ON.
(c) The signal can be used to verify implementation of forward run (M03) or reverse run (M04) command.
(d) If the reverse run command will turn ON, the motor will start deceleration. The US signal will turn OFF, and after confirming that the reached signal will turn ON, the reverse run command will be completed.


\section*{(3) Speed detection output (SD)}
(a) SD will turn ON when the speed drops below the speed set in parameter SP020 (SDTS).
(b) The SD signal will turn ON when he motor speed's absolute value drops below the set detection level regardless of the run command (SRN, SRI).

(4) Orientation complete output (ORCF)

ORCF will turn ON when the spindle position is currently within the in-position range set with parameter SP004 (OINP) during orientation.
(5) Current detect output (CD)

CD will turn ON when the current value is \(110 \%\) or more than the rated current.
(6) Forward run starting command output (SRNA)

This is the answer output to the forward run start command input (SRN).
(7) Reverse run starting command output (SRIA)

This is the answer output to the reverse run start command input (SRI).
(8) Torque limiting 1, 2, 3 output (TL1A, TL2A, TL3A)

This is the answer output to the torque limit 1, 2, 3 input (TL1, TL2, TL3).
(9) Orientation starting command output (ORCA)

This is the answer output to the orientation start command input (ORC).
(10) Gear selecting command \(1,2,3\) output (GR1A, GR2A, GR3A)

This is the answer output to the gear selection command 1, 2, 3 input (GR1, GR2, GR3).
(11) Index forward run command output (WRNA), reverse run command output (WRIA)

This is the answer output to the index forward run command (WRN) and reverse run command (WRI).
(12) L coil selection command output (LCSA)

This is the answer output to the L coil selection command input (LCS).
(13) Sub-motor selection command output (MSA)

This is the answer output to the sub-motor selection command (MS).
(14) Synchronous speed match output (SYSA)

SYSA will turn ON when the movement from the speed operation mode to the spindle synchronous operation mode becomes possible during spindle synchronous operation.
(15) Coil changeover output (MKC)

MKC will turn ON for a set time when changing over from the L coil to the H coil or the H coil to the \(L\) coil during coil changeover.
(16) Index positioning complete output (WRCF)

WRCF will turn ON when indexing is completed during indexing.

\section*{(17) Drive unit warning output (DWN)}

DWN will turn ON when any warning occurs in the spindle drive unit.
(18) Alarm output (ALM)

ALM will turn ON when any alarm occurs in the spindle drive unit.
(19) Z-phase passed output (ZFIN)

ZFIN will turn ON when the Z-phase is passed for the first time after the servo will turn ON during position control.
(20) Position loop in-position output (INP)

INP will turn ON when the current position is within the in-position range set with parameters during positioning other than orientation. INP will turn OFF when the servo turns OFF.
(21) Spindle control mode selection command 1, 2, 3, 4, 5 output (SC1A, SC2A, SC3A, SC4A, SC5A)
This is the answer output to the spindle control mode selection command 1, 2, 3, 4, 5 input (SC1, SC2, SC3, SC4, SC5).

\subsection*{3.7 Meter outputs}


\section*{(1) Speedometer output}
(a) The following specification is recommended for speedometer.
(i) Model : YM-8G DC voltmeter (Mitsubishi)
(ii) Rating : 10VDC full scale
(iii) Internal impedance : About \(10 \mathrm{k} \Omega\)
(b) +10 VDC is output at the motor max speed, regardless of rotation direction.

(2) Load meter output
(a) The following specification is recommended for load meter.
\(\begin{array}{ll}\text { (i) Model } & : \text { YM-8G DC voltmeter (Mitsubishi) } \\ \text { (ii) Rating } & : 10 V D C \text { full scale } \\ \text { (iii } & \text { Internal impedance : About } 10 \mathrm{k} \Omega \\ \text { (iv) Scale } & \end{array}\)

\%
(b) Reading of load meter is percent (\%) of load to the rated motor output. The relationship between motor output capacity \([\mathrm{kW}]\) and load meter reading \([\mathrm{r} / \mathrm{min}]\) is as follows:


\subsection*{3.8 Output interface}
\[
\begin{array}{ll}
\text { Open emitter output } & \begin{array}{l}
\text { Output transistor rating } \\
\text { M54630P TR array }
\end{array} \\
& \text { Tolerable voltage }: 24 \mathrm{VDC} \text { or less } \\
\text { Tolerable current }: 50 \mathrm{~mA} \text { or less (per output) }
\end{array}
\]

(Note 1) Connect the spindle/C-axis changeover output signal only when using the MHE90K detector.
(Note 2) The changeover circuit configuration for coil changeover is as shown below.
<Spindle drive unit> <AC spindle motor>

- The relays, contactors, cables, etc., for the spindle drive unit and AC spindle motor that are not enclosed in the bold line must be prepared by the machine maker.
- The relay (RA) must be connected in parallel with the flywheel diode; and the contactors (MC1, MC2) must be connected in parallel with the CR surge absorber coil.
* During low-speed coil selection \(\qquad\)人 connection (Turn MC1 ON, MC2 OFF) During high-speed coil selection \(\wedge\) connection (Turn MC1 OFF, MC2 ON)

\subsection*{3.9 Spindle protection/warning functions}

Reset methods are indicated as follows:
AR: Turn ON the spindle drive unit again.
PR: Turn ON the CNC again.
NR: Reset the CNC.
\begin{tabular}{|c|c|c|c|c|}
\hline Alarm No. & Abbr. & Name & Meaning & Reset method \\
\hline 12 & ME1 & Memory error 1 & A check sum in the ROM or a RAM check error occurred in the spindle drive's control card. & AR \\
\hline 13 & SWE & S/W process error & The S/W process did not end within the specified time. & PR \\
\hline 17 & ADE & AD error & The AD converter for current detection did not function normally during initialization. & PR \\
\hline 21 & NS2 & No signal (Spindle encoder) & A signal was not input from the spindle encoder (for orientation, C -axis), or was not at a normal level. & PR \\
\hline 23 & OSE & Speed excessive error & The command speed and motor speed difference was above the specified value, and the state continued for the specified time. & PR \\
\hline 31 & OS & Overspeed & The motor speed exceeded \(115 \%\) of the set max. speed. & PR \\
\hline 32 & PMOC & Overcurrent & A current exceeding the specified value flowed to the IMP used for spindle drive's main circuit. & PR \\
\hline 34 & DP & CRC error & A CRC error occurred in the communication data from the NC. & PR \\
\hline 35 & DE & Data error & The movement command data from the NC is abnormally high during position control. & PR \\
\hline 36 & TE & Transmission error & The periodic data transmission from the NC was stopped. & PR \\
\hline 37 & PE & Initial parameter error & The parameter is out of the tolerable range. & PR \\
\hline 38 & TP1 & Protocol error 1 (frame) & There was a protocol error in the communication with the NC. (Frame error) & PR \\
\hline 39 & TP2 & Protocol error 2 (information) & There was a protocol error in the communication with the NC. (Information error) & PR \\
\hline 3B & PMOH & Power module overheat & An overheat in the IPM used for the drive's main circuit was detected. & PR \\
\hline 40 & KE1 & TK unit changeover error & The procedure for changing the signal during use of the TK unit is wrong. & PR \\
\hline 41 & KE2 & TK communications error & Communication with the TK unit during use of the TK unit was not performed correctly. & PR \\
\hline 43 & FE & Feedback error & A deviation occurred in the feedback from the spindle encoder and motor built-in encoder. & PR \\
\hline 44 & CAXE & C-axis changeover alarm & When using the coil changeover motor, the C-axis was controlled with the H coil. & NR \\
\hline 46 & OHM & Motor overheat & The motor overheated and the built-in thermal protector functioned because an overload occurred or the motor cooling blower stopped. & NR \\
\hline 50 & OL & Overload & The time that the motor current exceeded the overload detection level is more than the detection time constant. & NR \\
\hline 52 & OD & Excessive error & The position tracking error exceeded the specified value during position loop operation. & NR \\
\hline 5C & ORFE & Orientation feedback error & When the orientation in-position was completed, the pulse miss value was higher than the parameter setting value (SP114:OPER). & NR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Alarm No. & Abbr. & Name & Meaning & Reset method \\
\hline 6F & PALM & Power supply alarm & An alarm related to the power supply has been generated. & AR \\
\hline 88 & WD & Watch dog & 88 is the watch dog alarm. Refer to the section "Servo alarms" for details. & AR \\
\hline E1 & WOL & Overload warning & The time that the motor current exceeded the overload detection level was \(80 \%\) or more of the detection time constant. & AR \\
\hline E4 & WPE & Parameter error warning & A parameter out of the setting range was set. The illegal parameter will be ignored, and the value before the illegal parameter setting will be retained. & - \\
\hline E7 & NCE & CNC emergency stop & An emergency stop command was input form CNC. & - \\
\hline E8 & 0 & Power supply Auxiliary regeneration frequency over & The regeneration at the limit of regeneration capacity occurs frequently. & - \\
\hline E9 & P & Power supply Instantaneous stop warning & \begin{tabular}{l}
An Instantaneous power stop occurred for 25 ms or more. \\
(As the main circuit voltage has not dropped, an alarm has not occurred.)
\end{tabular} & NR \\
\hline EA & Q & \begin{tabular}{l}
Power supply \\
External emergency \\
stop input
\end{tabular} & \begin{tabular}{l}
An external emergency stop signal for the power supply was input. \\
Thus, 24 V is not added to the CN23 connector.
\end{tabular} & - \\
\hline EB & R & Power supply Excessive-regeneration alarm & The regeneration amount reached to 80\% level of the Excessive-regeneration alarm. & - \\
\hline
\end{tabular}
4. Optional Specifications and Parts ..... IV-80
4.1 Orientation specifications (optional) ..... IV-80
4.1.1 1-point orientation using magnetic sensor ..... IV-80
4.1.2 4096-point orientation using encoder ..... IV-88
4.1.3 4096-point orientation using motor built-in encoder ..... IV-91
4.1.4 Operation of orientation ..... IV-91
4.2 Synchronous tap function (option) ..... IV-94
4.2.1 Closed type synchronous tap ..... IV-94
4.2.2 Semi-closed type synchronous tap ..... IV-94
4.2.3 Operation of synchronous tap ..... IV-94
4.3 C-axis control (optional) ..... IV-95
4.3.1 When using encoder (OSE9OK+1024 BKO-NC6336H01) ..... IV-95
4.3.2 When using built-in encoder (MBE90K) ..... IV-98
4.3.3 When using built-in encoder (MHE90K) ..... IV-98
4.4 Single parts (optionally supplied parts) ..... IV-99
4.4.1 Power step-down transformer ..... IV-99
4.4.2 Noise filter ..... IV-101
4.5 Other optional specifications ..... IV-103
4.6 Theoretical acceleration and deceleration times ..... IV-104

\section*{4. Optional Specifications and Parts}
\begin{tabular}{|l|}
\hline
\end{tabular}

\section*{1. caution}

Always use the designated peripheral devices and options. Failure to observe this could lead to faults or fires.

\subsection*{4.1 Orientation specifications (optional)}

The following three types of orientation specifications are available:
(1) 1-point orientation using magnetic sensor
(2) 4096-point orientation using encoder
(3) 4096-point orientation using motor built-in encoder

\subsection*{4.1.1 1-point orientation using magnetic sensor}
(1) Connection

Refer to "1.4 Configuration" for the connection of the magnetic sensor and spindle drive unit.
(2) Magnet and detection head installation direction

The magnet and detection head should be installed in the specified orientation.
Standard type and high-speed standard type
The center reference hole of magnet and the reference notch of detection head should come to the same side.
Refer to CASE 1 , CASE 2 , CASE 3 and UNACCEPTABLE EXAMPLE 1.
High-speed small type
............ The reference notch of detection head should be positioned in reference with polarity
\((\mathrm{N}, \mathrm{S})\) of magnet.
Refer to CASE 4 , CASE 5 and UNACCEPTABLE EXAMPLE 2.
High-speed ring type
\(\ldots . . . . . .\). The reference notch of detection head should be positioned in reference with polarity ( \(\mathrm{N}, \mathrm{S}\) ) of magnet.
Refer to CASE 6, CASE 7 and UNACCEPTABLE EXAMPLE 3 .

CASE 1 Magnet is installed on the circumferential surface of rotating body. (Circumferential mounting) The reference hole of magnet and the reference notch of detection head should come to the opposite load side, as shown below.


Magnet is installed on circumferential surface of rotating body.

CASE 2 Magnet is installed on the front or back flat surface of rotating body. (Flat mounting)
(1) When the magnet is installed on the opposite load side of spindle, the reference hole of magnet and reference notch of detection head should face inward, as shown below.
(2) When the magnet is installed on the load side of spindle, the reference hole of magnet and reference notch of detection head should face outward, as shown below.


Magnet is installed on the opposite load side.


Magnet is installed on the load side.

CASE 3 In regard to CASE 1, the magnet and detection head can be changed to the following position as long as the reference hole and reference notch are aligned. With this, normal orientation can be carried out.
(However, the parameter SP097 orientation detector installation direction bit must be changed in this case.)


\section*{UNACCEPTABLE EXAMPLE 1}

If the magnet reference hole and detection head reference notch are not aligned, intense vibration will occur on both ends of the magnet, and orientation is impossible.


\section*{4. Optional Specifications and Parts}

CASE 4 Magnet is installed on the circumferential surface of rotating body. (Circumferential mounting) The detection head reference notch should be on the opposite load side and the magnet should be installed in the polarity shown below.


\section*{Magnet is installed on the circumferential surface of rotating body.}

CASE 5 As long as the relation between location of the detection head reference notch and the polarity of the magnet are aligned, the detection head and the magnet can be installed as shown below in CASE 4, and normal orientation can be carried out.
(However, the parameter SP097 orientation detector installation direction bit must be changed in this case.)


\section*{UNACCEPTABLE EXAMPLE 2}

If the detection head reference notch is not aligned properly in reference to polarity of the magnet, intense vibration occurs on both ends of the magnet, and orientation is impossible.


In this example, polarity ( \(\mathrm{N}, \mathrm{S}\) ) of magnet is inverse to that in

CASE 6 The detection head reference notch is on the opposite load side of spindle and the polarity of the magnet is as shown below.


CASE 7 As long as the relation between location of detection head reference notch and the polarity of the magnet are aligned, the detection head and the magnet can be installed as shown below in CASE 4 , and normal orientation can be carried out.
(However, the parameter SP097 orientation detector installation direction bit must be changed in this case.)


\section*{UNACCEPTABLE EXAMPLE 3}

If the detection head reference notch is not aligned properly in reference to polarity of the magnet, intense vibration occurs on both ends of the magnet, and orientation is impossible.


In this example, polarity \((\mathrm{N}, \mathrm{S})\) of magnet is inverse to that in


Table 1
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{ BKO-C1810H03 } & Standard & \multicolumn{2}{c|}{ BKO-C1730H06 } & High-speed standard \\
\hline R (Radius) mm & Max. gap mm & Min. gap mm & Max. gap mm & Min. gap mm \\
\hline 40 & \(11.5 \pm 0.5\) & \(2.7 \pm 0.5\) & \(10 \pm 0.5\) & \(1.22 \pm 0.5\) \\
\hline 50 & \(9.5 \pm 0.5\) & \(2.8 \pm 0.5\) & \(8 \pm 0.5\) & \(1.31 \pm 0.5\) \\
\hline 60 & \(8.5 \pm 0.5\) & \(3.0 \pm 0.5\) & \(7 \pm 0.5\) & \(1.5 \pm 0.5\) \\
\hline 70 & \(8.0 \pm 0.5\) & \(3.4 \pm 0.5\) & \(7 \pm 0.5\) & \(2.38 \pm 0.5\) \\
\hline
\end{tabular}

Table 2
\begin{tabular}{|c|c|c|}
\hline & BKO-C1810H03 & Standard \\
\hline \(\mathbf{R}\) (Radius) \(\mathbf{m m}\) & Gap mm & BKO-C1730H06 \\
\hline 40 & \(6 \pm 0.5\) & \(5 \pm 0.5\) \\
\hline 50 & \(6 \pm 0.5\) & \(5 \pm 0.5\) \\
\hline 60 & \(6 \pm 0.5\) & \(5 \pm 0.5\) \\
\hline
\end{tabular}

Table 3
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|c|}{ BKO-C1730H09 } \\
\hline R (Radius) \(\mathbf{~ m m}\) & Max. gap mm-speed standard \\
\hline 40 & \(6.25 \pm 0.5\) & Min. gap mm \\
\hline 50 & \(6.0 \pm 0.5\) & \(3.3 \pm 0.5\) \\
\hline 60 & \(5.75 \pm 0.5\) & \(3.7 \pm 0.5\) \\
\hline 70 & \(5.5 \pm 0.5\) & \(3.85 \pm 0.5\) \\
\hline
\end{tabular}

\section*{(3) Caution on installation of magnet}

When the magnet is installed to the spindle, pay attention to the following:
(a) Do not place an intense magnetic source near the magnet.
(b) Carefully handle the magnet, avoiding mechanical shock to the magnet.
(c) Secure the magnet to the spindle with M4 screws.
(d) After the magnet is installed, balance the entire spindle.
(e) Align the center of the magnet (between \(N\) and \(S\) ) with the center line of the rotating disk on the spindle.
(The position relation should be as shown in CASE 1 to CASE 7 on the previous pages.)
(f) Keep the magnet and its peripheral clean from iron particles (iron particles may cause malfunction).
(g) Apply lock paint, or other suitable means, to prevent installation screws from becoming loose.
(h) If the magnet is installed on a ground rotating disk, demagnetize the disk.
(i) Diameter of rotating disk on which the magnet is installed should be within the range from 80 mm to 120 mm .
(j) If rotation speed of the spindle on which the magnet is installed exceeds \(6000 \mathrm{r} / \mathrm{min}\), use a high-speed type magnet (applicable up to \(12000 \mathrm{r} / \mathrm{min}\) of rotation speed). If rotation speed exceeds \(12000 \mathrm{r} / \mathrm{min}\), use a ring type magnet.
(k) When installing the magnet on a rotating body plane, keep the speed below \(6,000 \mathrm{r} / \mathrm{min}\).

\section*{(4) Caution on installation of sensor}

Observe the following cautions when installing the sensor.
(a) The position relation of the magnet and detection head should follow CASE 1 to CASE 7 .
(b) The center line of detection head should be in line with the center of magnet.
(c) The gap between the magnet and detection head should be as follows:
- Table 1 on previous page when using standard magnet and installation CASE 1 or CASE 3
- Table 1 on previous page when using high-speed standard magnet and installation
\[
\begin{array}{|l|}
\hline \text { CASE } 1 \text { or } \text { CASE } 3 \\
\hline
\end{array}
\]
- Table 2 on previous page when using standard magnet and installation CASE 2
- Table 2 on previous page when using high-speed standard magnet and installation CASE 2
- Table 3 on previous page when using high-speed compact magnet and installation CASE 1 or CASE 3
- An example of the high-speed ring magnet is shown in the outline drawing in section "4.1.1 (5)". * Manufacturing a jig is recommended for mass production.
(d) Connector used in preamplifier

BKO-C1810: Oil proof-type
BKO-C1730 : Not oil proof-type
Install both type at a place not subject to oil.
(e) The cable between the preamplifier and the controller should be laid down apart from high-voltage cables.
(f) Check the connector wiring, securely engage the receptacle and tighten connector lock screws.

\section*{(5) Magnetic sensor orientation parts (Optionally supplied parts)}

Select the combination of the magnetic sensor parts for magnetic sensor orientation from the table below.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Type} & \multirow[b]{2}{*}{Tolerable speed [r/min]} & \multicolumn{2}{|r|}{\multirow[b]{2}{*}{Model}} & \multicolumn{3}{|c|}{Combination} \\
\hline & & & & Preamplifier & Sensor & Magnet \\
\hline Standard & 0 to 6000 & MAGSENSOR & BKO-C1810H01 to 3 & H01 & H02 & H03 \\
\hline High-speed standard & 0 to 12000 & MAGSENSOR & BKO-C1730H01.2.6 & H01 & H02 & H06 \\
\hline High-speed small & 0 to 12000 & MAGSENSOR & BKO-C1730H01.2.9 & H01 & H02 & H09 \\
\hline High-speed ring & 0 to 25000 & MAGSENSOR & BKO-C1730H01.2.11 & H01 & H02 & H41 \\
\hline High-speed ring & 0 to 25000 & MAGSENSOR & BKO-C1730H01.2.12 & H01 & H02 & H42 \\
\hline High-speed ring & 0 to 30000 & MAGSENSOR & BKO-C1730H01.2.13 & H01 & H02 & H43 \\
\hline High-speed ring & 0 to 30000 & MAGSENSOR & BKO-C1730H01.2.14 & H01 & H02 & H44 \\
\hline
\end{tabular}

\section*{Outline dimensions:}

\section*{- Preamplifier H01}


Connector (controller cable side)
Unit side : TRC116-21A10-7M
Connector (sensor side)
For BKO-C1810H01, R04-R-8F is used.
For BKO-C1730H01, TRC116-21A10-7F is used.
- Sensor H02



Connector
For BKO-C1810H02, R04-R-8M is used. For BKO-C1730H02, TRC116-12A10-7M is used.
- Magnet


\subsection*{4.1.2 4096-point orientation using encoder}

\section*{(1) Connection}

Refer to "1.4 Configuration" for the connection of the encoder and spindle drive unit.

\section*{(2) Installation conditions}

\section*{Mechanical characteristics for rotation}
a. Inertia
\(: 0.1 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\) or less
b. Shaft friction torque
\(: 0.98 \mathrm{~N} \cdot \mathrm{~m}\) or less
c. Shaft angle acceleration
\(: 10^{4} \mathrm{rad} / \mathrm{s}^{2}\) or less
d. Tolerable speed
: 7,030r/min

\section*{Mechanical configuration}
a. Bearings : Non-lubricated for 100,000 hours or more rotations (at 2,000r/min) Non-lubricated for 20,000 hours or more at 6,000r/min
b. Shaft amplitude
\(: 0.02 \mathrm{~mm}\) or less at 15 mm from end
c. Tolerable load
: Thrust direction 10kg (5kg during operation) Radial direction 20 kg (10kg during operation)
d. Weight
\(: 1.5 \mathrm{~kg}\) max
e. Squareness of flange to shaft \(: 0.05 \mathrm{~mm}\) or less
f. Flange matching eccentricity \(: 0.05 \mathrm{~mm}\) or less

\section*{Working conditions}
a. Working temperature range \(:-5^{\circ} \mathrm{C}\) to \(+55^{\circ} \mathrm{C}\)
b. Storage temperature range \(:-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
c. Humidity range \(: 95 \%\) RH (at \(40^{\circ} \mathrm{C}\) ) for 8 hours
d. Vibration resistance \(\quad: 5\) to 50 Hz , total vibration width 1.5 mm , each shaft for 30 min .
e. Impact resistance \(: 294.0 \mathrm{~m} / \mathrm{s}^{2}(30 \mathrm{G})\)

\section*{(3) Handling}
a. Use of a flexible coupling is recommended for the coupling of the encoder and spindle shaft in terms of improving the encoder life and performance.
b. Installation precision

The precision shown below should be secured for the encoder installation section engaging section and installation surface sway in order to maximize the coupling life.

c. Recommended coupling
\begin{tabular}{|l|c|c|}
\hline \multicolumn{2}{|l|}{} & Recommendation 1 \\
\hline Manufacturer & Tokushu Seiko & Recommendation 2 \\
\hline Model & Model M1 & Eagle \\
\hline Resonance frequency & 1374 Hz & 3515 Hz \\
\hline \multicolumn{2}{|l|}{ Position detection error } & \(0.8 \times 10^{-3} \circ\) \\
\hline \multicolumn{2}{|c|}{ Tolerable speed } & \(20000 \mathrm{r} / \mathrm{min}\) \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Mis- \\
alignment
\end{tabular}} & Core deviation & 0.7 mm \\
\hline \cline { 2 - 3 } \begin{tabular}{l} 
Outline \\
dimensions
\end{tabular} & Angle displacement & \(1.5^{\circ}\) \\
\hline
\end{tabular}

Refer to the coupling catalogue for details on the coupling.
(4) Encoder orientation parts (Optionally supplied parts)

Encoder (1024p/rev)
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Encoder model } & Tolerable speed \\
\hline RFH-1024-22-1M-68 & \(6000 \mathrm{r} / \mathrm{min}\) \\
\hline RFH-1024-22-1M-68-8 & \(8000 \mathrm{r} / \mathrm{min}\) \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Pin & Function & Pin & Function \\
\hline A & \(1 \mathrm{ch} A\) & K & 0 V \\
\hline B & 2 chZ & L & \\
\hline C & 1 chB & M & \\
\hline D & & N & \(1 \mathrm{ch} \overline{\mathrm{A}}\) \\
\hline E & Case earth & P & \(2 \mathrm{ch} \bar{Z}\) \\
\hline F & & R & \(1 \mathrm{ch} \overline{\mathrm{B}}\) \\
\hline G & & S & \\
\hline H & +5 V & T & \\
\hline J & & & \\
\hline
\end{tabular}

\subsection*{4.1.3 4096-point orientation using motor built-in encoder}

The motor built-in encoder built-in motor with Z-phase signal is required for this specification.
This can be used only when the motor and spindle coupling is the direction coupling or when the timing belt with a reduction ratio of 1 is used.

\section*{(1) Connection}

Refer to "1.4 Configuration" for the connection of the signal wires.

\section*{(2) Installation}

The encoder is built into the motor so no special detector needs to be installed.

\subsection*{4.1.4 Operation of orientation}

\section*{(1) Operation modes}

There are three modes of orientation stop. Desired mode can be selected by setting parameter SPECO.
1. PRE :
(a) Spindle approaches the stop position in the direction of on-going rotation.
2. Forward orientation :
\(\ldots \ldots . .\). (b) Spindle approaches the stop position in forward direction of rotation, regardless of direction of on-going rotation.
3. Reverse orientation :
\(\ldots . . . .\). (c) Spindle approaches the stop position in the reverse direction of rotation, regardless of direction of on-going rotation.

(2) Operation sequence
(a) When orientation command ORC is given, motor speed changes from the steady run speed to "Position loop changeover speed" and at the same time the multi-point orientation stop position is read.
(b) When motor speed reaches the "Position loop changeover speed", control mode changes from speed control to positioning control (position loop gain parameter (Note 1)).
("Position loop changeover speed" is automatically set when position loop gain is specified by parameter.)
(c) When control mode changes, distance to the orientation stop position is calculated and the motor is decelerated in the set pattern (specified by parameter CSP) to enter the orientation mode.
(d) When the spindle enters the in-position range (set by parameter OINP), "oriented spindle stop complete signal (in-position)" ORCF turns ON.
(e) The stop position zero point can be shifted by setting parameter OPST.
(f) When orientation command (ORC) is removed, the motor is returned to the previously specified run speed.

(Note 1) PGM is used for the magnetic sensor and motor built-in encoder orientation and PGE is used for the encoder orientation.

The stopping position according to the encoder installation direction is as shown below:
\begin{tabular}{|c|c|c|}
\hline & Case 1 & Case 2 \\
\hline Installation direction &  &  \\
\hline Normal orientation & Looking from arrow A & Looking from arrow A \\
\hline
\end{tabular}
(3) Diagram of relation of parameters for orientation


\subsection*{4.2 Synchronous tap function (option)}

There are two types of synchronous tap.
1. Closed type synchronous tap
2. Semi-closed type synchronous tap

\subsection*{4.2.1 Closed type synchronous tap}

A position loop can be built up with position signal from an encoder installed on spindle.

\section*{(1) Connection}

Refer to "1.4 Configuration" for the connection of the encoder and spindle drive unit.
(2) Installation of encoder

For installation of encoder, refer to the pages related to encoder orientation.

\subsection*{4.2.2 Semi-closed type synchronous tap}

A position loop can be built up with position signal from motor built-in encoder.
A special detector is not required for synchronous tap if the spindle is coupled to the motor shaft directly or through gears.
(When belt or timing belt is used, closed type synchronous tap is applicable.)
It is also applicable to standard motor having no Z-phase control.

\section*{(1) Connection}

No additional connection is required for semi-closed type synchronous tap.

\subsection*{4.2.3 Operation of synchronous tap}

One of synchronous tap operation modes can be selected with parameter.
(1) Synchronous tap starts after zero point return (parameter SPECT-bitE is set to "0").
(2) Synchronous tap starts after deceleration and stop (parameter SPECT-bitE is set to "1").

The operation of synchronous tap is conditioned as shown below.
\begin{tabular}{|l|c|c|c|c|}
\multicolumn{1}{l|}{ O: Available } & \(\times\) : Not available \\
\hline & Without orientation & \begin{tabular}{c} 
Magnetic sensor \\
orientation
\end{tabular} & Encoder orientation & \begin{tabular}{l} 
Motor built-in \\
encoder orientation
\end{tabular} \\
\hline \begin{tabular}{l} 
Synchronous tap \\
after zero point \\
return
\end{tabular} & \(\times\) & 0 & \(O\) & 0 \\
\hline \begin{tabular}{l} 
Synchronous tap \\
after deceleration \\
and stop
\end{tabular} & \(O\) & \(O\) & 0 & 0 \\
\hline
\end{tabular}

\subsection*{4.3 C-axis control (optional)}

\subsection*{4.3.1 When using encoder (OSE9OK+1024 BKO-NC6336H01)}

\section*{(1) Connection}

Refer to page "1.4 Configuration" for the connection of the encoder and spindle drive unit.

\section*{(2) Installation conditions}

\section*{Mechanical characteristics for rotation}
a. Inertia
\(: 0.1 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\) or less
b. Shaft friction torque
\(: 0.98 \mathrm{~N} \cdot \mathrm{~m}\) or less
c. Shaft angle acceleration
: \(10^{5} \mathrm{rad} / \mathrm{s}^{2}\) or less
d. Tolerable speed
: 7,030r/min

\section*{Mechanical configuration}
a. Bearings : Non-lubricated for 100,000 hours or more rotations (at 2,000r/min) Non-lubricated for 20,000 hours or more at \(6,000 \mathrm{r} / \mathrm{min}\)
b. Shaft amplitude
\(: 0.02 \mathrm{~mm}\) or less at 15 mm from end
c. Tolerable load
: Thrust direction 10kg (5kg during operation) Radial direction 20 kg (10kg during operation)
d. Weight
: 2kg max
e. Squareness of flange to shaft \(: 0.05 \mathrm{~mm}\) or less
f. Flange matching eccentricity \(: 0.05 \mathrm{~mm}\) or less

\section*{Working conditions}
a. Working temperature range
\[
:-5^{\circ} \mathrm{C} \text { to }+55^{\circ} \mathrm{C}
\]
b. Storage temperature range : \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
c. Humidity range : \(95 \% \mathrm{RH}\) (at \(45^{\circ} \mathrm{C}\) ) for 8 hours
d. Vibration resistance
: 5 to 50 Hz , total vibration width 1.5 mm , each shaft for 30 min .
e. Impact resistance
\(: 294.0 \mathrm{~m} / \mathrm{s}^{2}\) (30G)

\section*{(3) Handling}
a. Installation of encoder

Use of a flexible coupling is recommended for the coupling of the encoder and spindle shaft in terms of improving the encoder life and performance.
b. Installation precision

The precision shown below should be secured for the encoder installation section engaging section and installation surface sway to secure the coupling life.

c. Recommended coupling
\begin{tabular}{|l|c|c|}
\hline & Recommendation 1 & Recommendation 2 \\
\hline Manufacturer & Tokushu Seiko & Eagle \\
\hline Model & Model M1 & FCS38A \\
\hline Resonance frequency & 1374 Hz & 3515 Hz \\
\hline Position detection error & \(0.8 \times 10^{-3} \circ\) & \(1.2 \times 10^{-3} \circ\) \\
\hline Tolerable speed & \(20000 \mathrm{r} / \mathrm{min}\) & \(10000 \mathrm{r} / \mathrm{min}\) \\
\hline \multirow{2}{*}{\begin{tabular}{l} 
Mis- \\
alignment
\end{tabular}} & Core deviation & 0.7 mm \\
\hline \cline { 2 - 3 } & Angle displacement & \(1.5^{\circ}\) \\
\hline \multirow{2}{*}{ Dimensions } & Max. length & 74.5 mm \\
\cline { 2 - 4 } & Max. diameter & \(\varnothing 57 \mathrm{~mm}\) \\
\hline
\end{tabular}

Refer to the coupling catalogue for details on the coupling.
d. Cable
1) Consider the following points to allow the encoder to be used to its fullest.

A 4.5 V or higher power supply must be secured for the encoder.
For example:
(i) Increase the \(+5 \mathrm{~V}, 0 \mathrm{~V}\) wire size.
(ii) Use two or more wires for \(+5 \mathrm{~V}, 0 \mathrm{~V}\).
(iii) Keep the cable length as short as possible.
2) Others

The encoder is a precision device so do not apply strong impact, etc., to it. Incorrect wiring will cause trouble. Always confirm the connector name and pin No., etc., before wiring.
(4) C-axis control parts (Optionally supplied parts)
- Encoder OSE90K+1024 BKO-NC6336H01


Note 1. The max. encoder speed must be 6000 r/min or less.
Note 2. The dimensional tolerance that is not specified is \(\pm 0.5 \mathrm{~mm}\).

Signal
\begin{tabular}{|c|c|c|}
\hline & Generated signals & Remarks \\
\hline 1ch & \(1024 \mathrm{C} / T\) & \(\mathrm{~A} \cdot \mathrm{~B}\)-phase, \(\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}\)-phase \\
\hline 2ch & \(1 \mathrm{C} / \mathrm{T}\) & Z-phase \(\cdot \overline{\mathrm{Z}}-\)-phase \\
\hline 3ch & \(90000 \mathrm{C} / \mathrm{T}\) & \(\mathrm{C} \cdot \mathrm{D}\)-phase, \(\overline{\mathrm{C}} \cdot \overline{\mathrm{D}}\)-phase \\
\hline 4ch & \(1 \mathrm{C} / \mathrm{T}\) & Y-phase \(\cdot \overline{\mathrm{Y}} \cdot \mathrm{B}\)-phase \\
\hline
\end{tabular}

\section*{Connector pin assignment}
\begin{tabular}{|c|c|}
\hline Pin & Function \\
\hline A & 1ch Aphase \\
\hline B & 2ch Z-phase \\
\hline C & 1ch B-phase \\
\hline D & - - \\
\hline E & Case grounding \\
\hline F & 3ch C-phase \\
\hline G & 3ch D-phase \\
\hline H & \[
+5 \mathrm{VDC} \begin{aligned}
& +5 \% \\
& -10 \%
\end{aligned}
\] \\
\hline J & OV \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Pin & Function \\
\hline K & OV \\
\hline L & 3ch \(\overline{\mathrm{C}}\)-phase \\
\hline M & 3ch \(\overline{\mathrm{D}}\)-phase \\
\hline N & 1ch \(\overline{\mathrm{A}}\)-phase \\
\hline P & 2ch \(\overline{\overline{\mathrm{Z}}}\)-phase \\
\hline R & 1ch \(\overline{\mathrm{B}}\)-phase \\
\hline S & 4ch \(\quad\) Yphase \\
\hline T & 4ch \(\overline{\mathrm{Y}}\)-phase \\
\hline
\end{tabular}
- Grounding plate and cable clamp fittings

Refer to "4.4 Single parts".

\subsection*{4.3.2 When using built-in encoder (MBE90K)}

Refer to the MBE90K (built-in C-axis encoder) Specifications and Instruction Manual [BNP-A2993-41].

\subsection*{4.3.3 When using built-in encoder (MHE90K)}

Refer to the MHE90K (built-in C-axis encoder) Specifications and Instruction Manual [BNP-A2993-44].

\subsection*{4.4 Single parts (optionally supplied parts)}

\subsection*{4.4.1 Power step-down transformer}

When available power supply is at 400 V , use this optional step-down transformer.
(1) \(\mathbf{1 2 - 2 3 k V A}\) (ITEM1 to 3 )


N Name Piate TE


\section*{(2) 30 kVA to 75 kVA (ITEM4 to 8)}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ITEM} & \multirow[t]{2}{*}{Capacity (kVA)} & \multicolumn{7}{|c|}{Dimensions} & \multirow[t]{2}{*}{Weight (kg)} & \multirow[t]{2}{*}{Remarks} \\
\hline & & A & B & C & D & E & F & G & & \\
\hline 4 & 30 & 535 & 395 & 625 & 460 & 250 & 445 & M12 & 165 & 18.5K \\
\hline 5 & 37 & 535 & 395 & 665 & 460 & 250 & 485 & M12 & 185 & 22K, 26K \\
\hline 6 & 44 & 535 & 425 & 665 & 460 & 265 & 485 & M12 & 205 & 30K \\
\hline 7 & 60 & 625 & 425 & 815 & 540 & 255 & 625 & M16 & 280 & 37K \\
\hline 8 & 75 & 625 & 425 & 840 & 540 & 270 & 650 & M16 & 320 & 45K \\
\hline
\end{tabular}


Terminal Window


\section*{4. Optional Specifications and Parts}

\subsection*{4.4.2 Noise filter}

\section*{(1) Selection}

If radio noise must be reduced, select a noise filter from the following table according to the power supply unit model:
\begin{tabular}{|c|c|}
\hline MDS-C1-CV- & Noise filter name (Tohoku Kinzoku) \\
\hline 37 & LF-330 \\
\hline 55 & LF-340 \\
\hline 75 & LF-350 \\
\hline 110 & LF-360 \\
\hline 150,185 & LF-380K \\
\hline \(220,260,300\) & Two LF-380K units in parallel \\
\hline
\end{tabular}
(2) Noise filter installation position

Insert the noise filter in the unit input.

(3) Specifications
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Name & \begin{tabular}{c} 
Rated voltage \\
AC/DC (V)
\end{tabular} & \begin{tabular}{c} 
Rated current \\
AC/DC (A)
\end{tabular} & \begin{tabular}{c} 
Tested voltage \\
AC 1 min. (V) \\
Between case \\
terminals
\end{tabular} & \begin{tabular}{c} 
Insulation \\
resistance \\
\((\mathbf{M} \Omega)\) \\
500 VDC
\end{tabular} & \begin{tabular}{c} 
Leakage current \\
\((\mathbf{m A})\) \\
\(\mathbf{2 5 0 V} \mathbf{6 0 H z}\)
\end{tabular} & \begin{tabular}{c} 
Working \\
temperature \\
range \(\left({ }^{\circ} \mathbf{C}\right)\)
\end{tabular} \\
\hline 330 & 200 V & 30 A & 1500 & \(>300\) & \(<1\) & -20 to +55 \\
\hline 340 & 200 V & 40 A & 1500 & \(>300\) & \(<1\) & -20 to +45 \\
\hline 350 & 200 V & 50 A & 1500 & \(>300\) & \(<1\) & -20 to +45 \\
\hline 360 & 200 V & 60 A & 1500 & \(>300\) & \(<1\) & -20 to +45 \\
\hline 380 K & 200 V & 80 A & 2000 & \(>300\) & \(<5\) & -25 to +55 \\
\hline
\end{tabular}
(4) Shape and dimensions

LF-300 Series

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Part name & A & B & C & D & E & F & G & H & I \\
\hline LF-330 & 180 & 170 & 60 & 29 & 120 & 135 & 150 & 35 & 65 \\
\hline LF-340 & 180 & 160 & 50 & 30 & 200 & 220 & 240 & 40 & 80 \\
\hline LF-350 & 180 & 160 & 50 & 30 & 200 & 220 & 240 & 40 & 80 \\
\hline LF-360 & 200 & 180 & 60 & 30 & 300 & 320 & 340 & 50 & 100 \\
\hline
\end{tabular}
(mm)

\section*{LF-K Series}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Name & Terminal plate & A & B & C & D & E & F & G & H \\
\hline LF-380K & TE-K22 M6 & 670 & 400 & 560 & 380 & 500 & 170 & \(9 \times 6.5 \varnothing\) & \(6.5 \varnothing\) \\
\hline
\end{tabular}

\section*{4. Optional Specifications and Parts}

\subsection*{4.5 Other optional specifications}

Refer to the following optional specifications for each model shown below for optional specifications not explained in this manual.
\begin{tabular}{|c|l|c|}
\hline & \multicolumn{1}{|c|}{ Title of optional specifications } & Specifications No. \\
\hline\((1)\) & MDS-C1 Series coil changeover function optional specifications & BNP-A2993-23 \\
\hline\((2)\) & MBE90K (built-in C-axis encoder) specifications and instruction manual & BNP-A2993-41 \\
\hline\((3)\) & MHE90K (built-in C-axis encoder) specifications and instruction manual & BNP-A2993-44 \\
\hline
\end{tabular}

\subsection*{4.6 Theoretical acceleration and deceleration times}

In the calculation described below, load torque is assumed to be zero. Therefore, acceleration and deceleration times determined here somewhat differ from actual acceleration and deceleration times.
(1) Definition

(Note) 1) " \(\mathrm{P}_{0}\) " is (Rated power \(\times 1.2\) ).
Example: For spindle of \(2.2 / 3.7 \mathrm{~kW}\),
\[
P_{0}=3700 \times 1.2=4440(W)
\]
2) \(\mathrm{GD}^{2}=\left(\right.\) Motor \(\left.\mathrm{GD}^{2}\right)+\left(\right.\) Motor shaft conversion load \(\left.\mathrm{GD}^{2}\right)\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)\)
(2) Acceleration/deceleration time "t"
(a) Constant torque zone
\[
\mathrm{t} 1=\frac{1.03 \times \mathrm{GD}^{2} \times \mathrm{N1}^{2}}{375 \times \mathrm{P}_{0}}
\]
(b) Constant output (power) zone
\[
\mathrm{t} 2=\frac{1.03 \times \mathrm{GD}^{2} \times\left(\mathrm{N}^{2}-\mathrm{N1}^{2}\right)}{2 \times 375 \times \mathrm{P}_{0}}
\]
(s)
(c) Reduced output zone
\[
\mathrm{t} 3=\frac{1.03 \times \mathrm{GD}^{2} \times\left(\mathrm{N}^{3}-\mathrm{N}^{3}\right)}{3 \times 375 \times \mathrm{P}_{0} \times \mathrm{N} 2}
\]

Therefore, acc./dec. time t \(\left(0 \rightarrow N_{3}\right)\) is,
\[
\begin{equation*}
\mathrm{t}=\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3} \tag{s}
\end{equation*}
\]

Example: \(\left\{\begin{array}{l}G D_{L}^{2}=0.123 \mathrm{~kg} \cdot \mathrm{~m}^{2} \\ \text { For motor } \mathrm{SJ} \mathrm{N} 3.7 \mathrm{~A}\end{array}\right.\)
From specification \(2, \mathrm{GD}_{\mathrm{M}}^{2}=0.021 \mathrm{~kg} \cdot \mathrm{~m}^{2}\)
thus, \(\mathrm{GD}^{2}=0.021+0.123=0.144 \mathrm{~kg} \cdot \mathrm{~m}^{2}\)
\(t_{1}=\frac{1.03 \times 0.144 \times 1500^{2}}{375 \times 3700 \times 1.2}=0.200(\mathrm{~s})\)
\(t_{2}=\frac{1.03 \times 0.144 \times\left(6000^{2}-1500^{2}\right)}{2 \times 375 \times 3700 \times 1.2}=1.503(\mathrm{~s})\)
\(t_{3}=\frac{1.03 \times 0.144 \times\left(8000^{3}-6000^{3}\right)}{3 \times 375 \times 3700 \times 1.2 \times 6000}=1.465(\mathrm{~s})\)
Acc./dec. time for \(0 \rightarrow 8000 \mathrm{r} / \mathrm{min}\)
\[
\mathrm{t}=0.200+1.503+1.465=3.168
\]

\section*{Unit conversion :}

Speed : \(1 \mathrm{r} / \mathrm{min}=\frac{2 \pi}{60} \mathrm{rad} / \mathrm{s}\)
Output (power) : \(1 \mathrm{~kW}=1 / 1.3596 \mathrm{HP}\)

\section*{Formula :}
\[
P=\omega T_{0}=\left(2 \pi \frac{N}{60}\right) \times T
\]
V. IPM Spindle Drive System Section
1. Outline ..... V-2
1.1 Outline ..... V-2
1.2 Features of MDS-C1-SPM Series ..... V-2
1.3 Precautions for use ..... V-2

\section*{1. Outline}

\subsection*{1.1 Outline}

The MDS-C1-SPM Series is a spindle drive unit developed to drive the IPM (internal permanent magnet) spindle motor, a version of the conventional spindle motor that is more compact, has a higher efficiency and generates less heat.
Refer to "IV. MDS-C1-SP Spindle System Section" for any matters not described in this section.

\subsection*{1.2 Features of MDS-C1-SPM Series}

The IPM spindle system, which combines the IPM spindle drive unit and IPM spindle motor, has the following features in addition to those described in the "MDS-B Series" and "MDS-C1 Series" Specifications Manuals.
(1) High efficiency

By incorporating the IPM type spindle motor, the efficiency has been greatly improved compared to the conventional IM type spindle motor drive.
(2) Compact spindle motor

By incorporating the IPM type spindle motor, the size has been downsized compared to the conventional spindle motor.
(3) Low spindle motor heat generation

By incorporating the IPM type spindle motor, the heat generated at the spindle rotor has been greatly reduced. It is also possible to downsize the spindle cooling units, etc.

\subsection*{1.3 Precautions for use}
(1) The motor rated output is guaranteed at the power supply unit's rated input (200/230VAC).

If the input voltage fluctuates below this, the rated output may not be achieved with the IPM spindle drive unit.
(2) A higher harmonic chopper voltage, which is PWM-controlled, is applied on the motor so a higher harmonic leakage current will flow during motor operation. If a common earth leakage breaker is used, it could malfunction due to the higher harmonics. Use the earth leakage breaker for inverters (Mitsubishi: Progressive Super NV Series, etc.).
(3) The higher harmonic leakage current, explained above, also flows to the grounding wire between the motor and drive unit. If a CRT is used for the NC display unit, the screen image could be affected by the leakage current (magnetic field). Keep the grounding wire on the drive unit as far away from the CRT display unit as possible.
(4) A radio filter is installed in the AC reactor, but the motor and drive unit must always be grounded. If the units are insufficiently grounded, the AM radio reception may be inhibited.
2. Configuration of Drive System ..... v-4
2.1 Basic system configuration drawing ..... V-4
2.2 Combination with power supply unit. ..... V-4
2.3 List of IPM spindle drive units ..... V-5

\section*{2. Configuration of Drive System}

\subsection*{2.1 Basic system configuration drawing}

Example: One spindle axis + three servo axes

(Note 1) Set the IPM spindle drive unit next to the power supply unit.
(Note 2) Set the drive units in order of unit capacity from the power supply unit side.
(Note 3) Always install the AC reactor. Wire to the front step (breaker side) of the contactor.

\subsection*{2.2 Combination with power supply unit}
\begin{tabular}{|c|c|c|c|}
\hline No & IPM spindle drive unit type & Compatible power supply unit type & Remarks \\
\hline 1 & MDS-B/C1-SPM-110 & MDS-C1-CV-75 & \\
\hline 2 & MDS-B/C1-SPM-150 & MDS-C1-CV-110 & \\
\hline 3 & MDS-B/C1-SPM-185 & MDS-C1-CV-150 & \\
\hline 5 & MDS-C1-SPM-220 & MDS-C1-CV-185 & \\
\hline 6 & MDS-C1-SPM-260 & MDS-C1-CV-220 & \\
\hline 7 & MDS-C1-SPM-300 & MDS-C1-CV-260 & \\
\hline
\end{tabular}
(Note) The above combinations are standard for a one-on-one combination. The power supply unit's capacity is determined by the IPM spindle motor output. Note that the difference of the IPM spindle drive unit and power supply unit capacity must be within two ranks.
Refer to "8. Selection of Capacity" in the "I. MDS-C1 Series Servo/Spindle System Configuration Section" for details on making a selection.

\subsection*{2.3 List of IPM spindle drive units}

The following IPM spindle drive units are available.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Drive unit type} & MDS-B/C1-SPM-110 & MDS-B/C1-SPM-150 & MDS-B/C1-SPM-185 & \[
\begin{aligned}
& \text { MDS-C1- } \\
& \text { SPM-220 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MDS-C1- } \\
& \text { SPM-260 }
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Rated output current [A]} & 54 & 67 & 85 & 94 & 115 \\
\hline \multicolumn{2}{|l|}{Control method} & \multicolumn{5}{|l|}{Sinusoidal wave PWM control, current control type vector control method} \\
\hline \multicolumn{2}{|l|}{Braking method} & \multicolumn{5}{|c|}{Power regenerative braking} \\
\hline \multicolumn{2}{|l|}{Speed control range \({ }_{\text {[r/min }}^{\text {] }}\) [} & \multicolumn{5}{|c|}{35 to 8000} \\
\hline \multicolumn{2}{|l|}{Speed fluctuation rate} & \multicolumn{5}{|l|}{Max. 0.2\% of maximum speed (under load varying from 10\% to 100\%)} \\
\hline \multicolumn{2}{|l|}{Tolerable load moment of inertia} & \multicolumn{5}{|c|}{As a reference, 5-times or less of motor GD \({ }^{2}\)} \\
\hline \multicolumn{2}{|l|}{Connection with NC} & \multicolumn{5}{|c|}{MELDAS dedicated serial communication} \\
\hline \multirow{5}{*}{Environment} & Ambient temperature & \multicolumn{5}{|c|}{Operation: 0 to \(55^{\circ} \mathrm{C}\) (with no freezing), Storage/transportation: -15 to \(70^{\circ} \mathrm{C}\)} \\
\hline & Ambient humidity & \multicolumn{5}{|c|}{90\%RH (with no dew condensation)} \\
\hline & Atmosphere & \multicolumn{5}{|c|}{No corrosive gas, dust} \\
\hline & Altitude & \multicolumn{5}{|l|}{Operation/storage: 1000 m or less, Transportation: 10000 m or less} \\
\hline & Vibration & \multicolumn{5}{|c|}{\(4.9 \mathrm{~m} / \mathrm{s}^{2}(0.5 \mathrm{G})\) or less \(/ 49 \mathrm{~m} / \mathrm{s}^{2}(5 \mathrm{G})\) or less} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Drive unit type} & MDS-C1-SPM-300 & MDS-B-SPM-370 & MDS-B-SPM-450 & \\
\hline \multicolumn{2}{|l|}{Rated output current [A]} & 130 & 180 & 210 & \\
\hline \multicolumn{2}{|l|}{Control method} & \multicolumn{4}{|l|}{Sinusoidal wave PWM control, current control type vector control method} \\
\hline \multicolumn{2}{|l|}{Braking method} & \multicolumn{4}{|c|}{Power regenerative braking} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{ll} 
Speed control range & \(\begin{array}{l}\text { [r/min } \\
]\end{array}\) \\
\hline
\end{tabular}} & \multicolumn{4}{|c|}{35 to 8000} \\
\hline \multicolumn{2}{|l|}{Speed fluctuation rate} & \multicolumn{4}{|l|}{Max. \(0.2 \%\) of maximum speed (under load varying from 10\% to 100\%)} \\
\hline \multicolumn{2}{|l|}{Tolerable load moment of inertia} & \multicolumn{4}{|r|}{As a reference, 5 -times or less of motor GD \({ }^{2}\)} \\
\hline \multicolumn{2}{|l|}{Connection with NC} & \multicolumn{4}{|c|}{MELDAS dedicated serial communication} \\
\hline \multirow{5}{*}{Environment} & Ambient temperature & \multicolumn{4}{|c|}{Operation: 0 to \(55^{\circ} \mathrm{C}\) (with no freezing), Storage/transportation: -15 to \(70^{\circ} \mathrm{C}\)} \\
\hline & Ambient humidity & \multicolumn{4}{|c|}{90\%RH (with no dew condensation)} \\
\hline & Atmosphere & \multicolumn{4}{|c|}{No corrosive gas, dust} \\
\hline & Altitude & \multicolumn{4}{|l|}{Operation/storage: 1000 m or less, Transportation: 10000 m or less} \\
\hline & Vibration & \multicolumn{4}{|r|}{\(4.9 \mathrm{~m} / \mathrm{s}^{2}(0.5 \mathrm{G})\) or less \(/ 49 \mathrm{~m} / \mathrm{s}^{2}(5 \mathrm{G})\) or less} \\
\hline
\end{tabular}

The unit outline is the same as the SP Series.

Note 1) The rated output is guaranteed in the rated input voltage to the power supply unit (AC200 to 230 V ). If the input voltage changes and becomes less than that, the rated output may not appear.
Note 2) When the load exceeds \(50 \%\) ED, the overload alarm will occur. ( \(50 \%\) ED : ON for five minutes/OFF for five minutes in 10-minute cycle time)
3. Setting the IPM Spindle Drive Unit Parameters ..... V-8
3.1 Bit selection parameters ..... V-8
3.2 Setting the unit type, motor and power supply unit ..... V-10
3.3 Spindle monitor screen ..... V-11
3.4 List of spindle protection functions and warning functions ..... V-15

\section*{3. Setting the IPM Spindle Drive Unit Parameters}

The parameters unique to the MDS-B/C1-SPM unit are explained below. Refer to the "IV. MDS-C1-SP Spindle System Section" for details on any parameters not explained in this section.

\subsection*{3.1 Bit selection parameters}


3.2 Setting the unit type, motor and power supply unit
\begin{tabular}{|c|c|c|c|}
\hline No. & Abbrev. & Details & TYP \\
\hline SP039 & ATYP & Select the capacity of the drive unit to be used. & HEX setting \\
\hline SP040 & MTYP & \begin{tabular}{l}
Set the motor to be used. Note that this parameter is valid only when SP034 (SFNC2)-bit0 is set to "0". \\
Refer to the individual parameter setting list, enclosed at delivery, and set the motor type.
\end{tabular} & HEX setting \\
\hline SP041 & PTYP & \begin{tabular}{l}
Select the power supply to be used from the following values. \\
Note 1) When the power supply external emergency stop function (CN23) is valid, set " \(1 * *\) " with the 3rd digit set to 1 . (Example) For MDS-C1-CV-110, set "0111". \\
Note 2) Even when using in combination with a spindle drive unit higher than SPM-370, set " \(1 * *\) " with the 3rd digit set to 1 .
\end{tabular} & HEX setting \\
\hline
\end{tabular}

\subsection*{3.3 Spindle monitor screen}

The current state of the spindle can be confirmed on the NC screen.
The monitor screen is shown on this page.

\section*{[SPINDLE MONITOR]}

\begin{tabular}{|c|c|c|}
\hline Data & Unit & Display details \\
\hline GAIN & 1/s & The position loop gain during operation of the spindle with the position command is displayed. \\
\hline DROOP & pulse & The position deflection during operation of the spindle with the position command is displayed. \\
\hline SPEED & \(\mathrm{r} / \mathrm{min}\) & The motor rotation speed is displayed. \\
\hline LOAD & \% & The motor load (load ratio) is displayed. The 30 min . rating is \(100 \%\). \\
\hline AMP DISP & & The data of the 7-segment LED display for the spindle drive unit is displayed. \\
\hline ALARM & & The alarm No. is displayed when an alarm other than that displayed on the spindle drive unit's 7 -segment LED. \\
\hline CYC CNT & & The current position from the position detector's reference position (Z-phase) when operating the spindle with the position command is displayed. \\
\hline \[
\begin{array}{r}
\hline \text { D// 1L } \\
H
\end{array}
\] & & The control input signal 1 input from the NC to the spindle drive unit is displayed in correspondence to the bits. (Refer to section (1-1) for details.) \\
\hline \[
\begin{array}{r}
\mathrm{D} / \mathrm{IL} \\
\mathrm{H}
\end{array}
\] & & Same as above (control input signal 2) \\
\hline \[
\begin{array}{r}
\mathrm{D} / \mathrm{3L} \\
\hline
\end{array}
\] & & Same as above (control input signal 3) \\
\hline \[
\begin{array}{r}
\mathrm{D} / \mathrm{l} 4 \mathrm{~L} \\
\mathrm{H} \\
\hline
\end{array}
\] & & Same as above (control input signal 4) \\
\hline \[
\begin{array}{r}
\hline \text { D/O 1L } \\
\cdots \quad H \\
\hline-\quad . \quad .
\end{array}
\] & & The control output signal 1 output from the spindle drive unit to the NC is displayed in correspondence to the bits. (Refer to section (2-1) for details.) \\
\hline \[
\begin{array}{r}
\mathrm{D} / \mathrm{O} 2 \mathrm{~L} \\
\mathrm{H}
\end{array}
\] & & Same as above (control output signal 2) \\
\hline \[
\begin{array}{r}
\mathrm{D} / \mathrm{O} 3 \mathrm{~L} \\
\mathrm{H}
\end{array}
\] & & Same as above (control output signal 3) \\
\hline \[
\begin{array}{r}
\mathrm{D} / \mathrm{O} 4 \mathrm{~L} \\
\mathrm{H} \\
\hline
\end{array}
\] & & Same as above (control output signal 4) \\
\hline UNIT TYP & & The spindle drive unit type is displayed. \\
\hline UNIT NO & & The spindle drive unit serial No. is displayed. \\
\hline S/W VER & & The main software version in the spindle drive unit is displayed. \\
\hline 1 WORK TIME & & The cumulative working time of the spindle drive unit is displayed. \\
\hline 2 ALM HIST 1~8 & & The alarm history is displayed. 1 is the latest alarm. \\
\hline
\end{tabular}

\section*{(1-1) D/I (Control input) 1L}

\section*{H}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline F & E & D & C & B & A & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline G1 & & & & & TL3 & TL2 & TL1 & ALMR & PRM & & & & & SRV & RDY \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline bit & Name & \\
\hline 0 & RDY & Ready ON command \\
\hline 1 & SRV & Servo ON command \\
\hline 2 & & \\
\hline 3 & & \\
\hline 4 & & \\
\hline 5 & & \\
\hline 6 & PRM & Parameter conversion command \\
\hline 7 & ALMR & Servo alarm reset command \\
\hline 8 & TL1 & Torque limit 1 \\
\hline 9 & TL2 & Torque limit 2 \\
\hline A & TL3 & Torque limit 3 \\
\hline B & & \\
\hline C & & \\
\hline D & & \\
\hline E & & \\
\hline F & G1 & Cutting \\
\hline
\end{tabular}
(1-2) D/I (Control input) 2L

* Not used at this time.

\section*{(1-3) \(\quad \mathrm{D} / \mathrm{I}\) (Control input) 3L}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline F & E & D & C & B & A & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline & MCS & LCS & ORC & WRI & WRN & SRI & SRN & GR3 & GR2 & GR1 & SC5 & SC4 & SC3 & SC2 & SC1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline bit & Name & \\
\hline 0 & SC1 & Spindle control mode selection command 1 \\
\hline 1 & SC2 & Spindle control mode selection command 2 \\
\hline 2 & SC3 & Spindle control mode selection command 3 \\
\hline 3 & SC4 & Spindle control mode selection command 4 \\
\hline 4 & SC5 & Spindle control mode selection command 5 \\
\hline 5 & GR1 & Gear selection command 1 \\
\hline 6 & GR2 & Gear selection command 2 \\
\hline 7 & GR3 & Gear selection command 3 \\
\hline 8 & SRN & Forward run start command \\
\hline 9 & SRI & Reverse run start command \\
\hline A & WRN & Index forward run command \\
\hline B & WRI & Index reverse run command \\
\hline C & ORC & Orientation start command \\
\hline D & LCS & L coil selection command (during coil changeover) \\
\hline E & MCS & (M coil selection command) \\
\hline F & & \\
\hline
\end{tabular}

\section*{(1-4) \(D / I\) (Control input) 4L}

* Not used at this time.
(2-1) D/O (Control output) 1L
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline F & E & D & C & B & A & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline & INP & ZFIN & & & TL3A & TL2A & TL1A & ALM & PRM & & DWN & & & SON & RON \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline bit & Name & \\
\hline 0 & RON & In ready ON \\
\hline 1 & SON & In servo ON \\
\hline 2 & & \\
\hline 3 & & \\
\hline 4 & DWN & In drive unit warning \\
\hline 5 & & \\
\hline 6 & PRM & In parameter conversion \\
\hline 7 & ALM & In alarm \\
\hline 8 & TL1A & In torque limit 1 \\
\hline 9 & TL2A & In torque limit 2 \\
\hline A & TL3A & In torque limit 3 \\
\hline B & & \\
\hline C & & \\
\hline D & ZFIN & \\
\hline E & Z-phase passed \\
\hline F & & \\
\hline
\end{tabular}
(2-2) D/O (Control output) 2L

* Not used at this time.

\section*{(2-3) D/O (Control output) 3L}

\section*{H}

\begin{tabular}{|c|c|l|}
\hline bit & Name & \\
\hline 0 & SC1A & In spindle control mode selection command 1 \\
\hline 1 & SC2A & In spindle control mode selection command 2 \\
\hline 2 & SC3A & In spindle control mode selection command 3 \\
\hline 3 & SC4A & In spindle control mode selection command 4 \\
\hline 4 & SC5A & In spindle control mode selection command 5 \\
\hline 5 & GR1A & In gear selection command 1 \\
\hline 6 & GR2A & In gear selection command 2 \\
\hline 7 & GR3A & In gear selection command 3 \\
\hline 8 & SRNA & In forward run \\
\hline 9 & SRIA & In reverse run \\
\hline A & WRNA & In index forward run command \\
\hline B & WRIA & In index reverse run command \\
\hline C & ORCA & In orientation start command \\
\hline D & LCSA & In L coil selection command (during coil changeover) \\
\hline E & MCSA & (M coil selection command) \\
\hline F & & \\
\hline
\end{tabular}

\section*{(2-4) D/O (Control output) 4L}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|ccc|c|c|c|c|} 
F & E & D & C & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|l|}
\hline bit & Name & \\
\hline 0 & CD & Current detection \\
\hline 1 & SD & Speed detection \\
\hline 2 & US & Speed reached \\
\hline 3 & ZS & Zero speed \\
\hline 4 & ORCF & Orientation complete \\
\hline 5 & SYSA & Synchronous speed match \\
\hline 6 & MKC & In coil changeover \\
\hline 7 & WRCF & Index positioning complete \\
\hline 8 & & \\
\hline 9 & SD2 & Speed detection 2 \\
\hline A & & \\
\hline B & & \\
\hline C & & \\
\hline D & ATA & \\
\hline E & & \\
\hline In automatic adjustment \\
\hline
\end{tabular}

\subsection*{3.4 List of spindle protection functions and warning functions}

Refer to "3.9 Spindle protection/warning functions" in the "IV. MDS-C1-SP Spindle System Section" for details on numbers not listed here.
\begin{tabular}{|c|c|l|l|c|}
\hline No. & Abbrev. & \multicolumn{1}{|c|}{ Name } & \multicolumn{1}{c|}{ Details } & \begin{tabular}{c} 
Opera- \\
tion
\end{tabular} \\
\hline 16 & RD & \begin{tabular}{l} 
Magnetic pole \\
position \\
detection error
\end{tabular} & \begin{tabular}{l} 
This occurs when the start signal was input before Z-phase \\
automatic adjustment was executed (SP205=0), or when the \\
number of initial magnetic pole estimation retries was \\
exceeded.
\end{tabular} & PR \\
\hline 3A & OC & Overcurrent & \begin{tabular}{l} 
This occurs when the current command reached the spindle \\
drive's maximum output current value and continued for more \\
than 1 second.
\end{tabular} & PR \\
\hline 3D & SPHD & \begin{tabular}{l} 
Spindle speed \\
lock
\end{tabular} & \begin{tabular}{l} 
This occurs when the motor speed feedback was less than 45 \\
rotations, and the maximum motor torque command \\
continued for longer than the detection time (SP230, \\
0:3000ms).
\end{tabular} & PR \\
\hline 3E & SPOS & \begin{tabular}{l} 
Spindle speed \\
overrun
\end{tabular} & \begin{tabular}{l} 
(1) This occurs when the motor speed continued to \\
accelerate past the 112.5\% of the commanded value. \\
(2) This occurs when the motor rotated more than 10 during \\
the position/speed stop command.
\end{tabular} & PR \\
\hline 3F & OSE2 & \begin{tabular}{l} 
Excessive \\
speed \\
deflection 2
\end{tabular} & \begin{tabular}{l} 
This occurs when the speed deflection exceeded the \\
detection range (SP238, 0:30\%) for longer than the detection \\
time (SP239: 0:3000ms).
\end{tabular} & PR \\
\hline 52 & OLE & \begin{tabular}{l} 
Feedback error \\
(PLG)
\end{tabular} & \begin{tabular}{l} 
(1) This occurs when an excessive offset was detected in the \\
AD input value during PLG automatic adjustment. \\
(2) This occurs when an abnormal number of feedback \\
pulses was continuously detected between the Z-phase \\
pulses.
\end{tabular} & PR \\
\hline Overload 2 & \begin{tabular}{l} 
This occurs when the motor output reached the overload level \\
set with overload detection level (SP313, 0: Invalid) and \\
detection time constant (SP314, 0: Invalid).
\end{tabular} & NR \\
\hline
\end{tabular}
4. Setup Procedures ..... V-18
4.1 Wiring the drive unit ..... V-18
4.2 Setting the parameters ..... V-18
4.3 PLG Z-phase automatic adjustment ..... V-18
4.4 PLG automatic adjustment of SPM unit ..... V-19
4.5 Alarms ..... V-19
4.6 Handling the motor ..... V-19
4.6.1 Storage ..... V-19
4.6.2 Assembly (built-in type) ..... V-19

\section*{4. Setup Procedures}

\subsection*{4.1 Wiring the drive unit}

The wiring is the same as the "MDS-B/C1-SP Series" spindle drive unit. Refer to "3.8 Output interface" in the "IV. MDS-C1-SP Spindle System Section" for the coil changeover specifications.

\subsection*{4.2 Setting the parameters}
<Parameters used for adjustment>
SP205 (ZCHS) … Validate the PLG Z-phase automatic adjustment function (0: Invalid/1: Valid)
SP245 (PGHS) … Validate the MDS-B/C1-SPM PLG automatic adjustment function (0: Invalid/1: Valid)

\subsection*{4.3 PLG Z-phase automatic adjustment}

Z-phase automatic adjustment is a function that automatically adjusts the relative position of the motor magnetic pole and the PLG Z-phase pulse signal input into the MDS-B/C1-SPM, and then saves and validates the adjustment data. This function is used to increase the output torque accuracy, and must always be carried out when the machine is started up. Execute this function with the following procedures.

\section*{(Note)}
*1. The mechanical adjustments (gear - sensor gap, etc.) must already be completed.
*2. When using this function, set the spindle load \(\mathrm{GD}^{2}\) (max.: approx. 5-fold of the motor \(\mathrm{GD}^{2}\) ) and the frictional load as low as possible.
*3. The motor will automatically rotate at the adjustment speed during the Zphase automatic adjustment. Do not touch the rotating sections, as these are hazardous.
*4. If START (ON) is executed before the adjustment is completed, alarm 16 will occur, and the protection function will activate.
(1) Change SP205 from 0 to 1, and start forward run operation. (The power does not need to be turned OFF and ON.)
The control output 4 H bit " D " will be set to 1 until the unit power is turned ON again.
(Note) The spindle motor will automatically rotate at the adjustment speed (two steps for Z-phase pulse detection and magnetic pole position detection).
The adjustment results will be calculated approximately 90 seconds after forward run is started (this time will differ slightly according to the magnetic pole position). Then operation will stop automatically.
(2) Confirm that the motor has automatically stopped. Leave parameter SP205 set to 1, turn START OFF, and turn the power OFF and ON. (When SP205 is set to 1, the adjustment data saved in SPM will be used.)
(Note) If START is turned OFF during automatic rotation, reset SP205 to 0, and turn the power OFF and ON. Then, repeat the procedure from step (1).
(Note) If the drive unit or motor is replaced, if the PLG is reinstalled, or if the signals are readjusted, etc., always reset SP205 to 0, and turn the power OFF and ON. Then, repeat the procedure from step (1). Failure to observe this will prevent correct operation due to invalid adjustment data.

\section*{4. Setup Procedures}

\subsection*{4.4 PLG automatic adjustment of SPM unit}

PLG automatic adjustment is a function that automatically adjusts the PLG A and B-phase sinusoidal wave signals input into the SPM unit. (Adjusts the offset and gain, etc.) The adjustment data is then saved and validated.
This function is used to improve the position data accuracy, and must always be carried out when the machine is started up.
(Note)
*1. As a condition, the PLG Z-phase automatic adjustment described in "4.3" must be completed.
*2. The motor will automatically rotate at the adjustment speed during the PLG automatic adjustment. Do not touch the rotating sections of the spindle motor or spindle end, as these are hazardous.
(1) Change parameter (SP245) from 0 to 1, and start forward run operation. The control output 4H bit "D" will be set to 1 from when the parameter is changed to when the power is turned ON again.
(Note) The spindle motor will automatically rotate at the adjustment speed (two steps for offset adjustment and gain adjustment).
The adjustment results will be calculated within several seconds after forward run is started. Then operation will stop automatically.
(2) Leave parameter (SP245) set to 1, turn START OFF, and turn the drive unit power OFF and ON. (When SP245 is set to 1, the adjustment data saved in SPM will be used.)
(If SP245 is set to 0, the adjustment data will be invalidated.)
To carry out PLG automatic adjustment again (when the unit has been replaced, the PLG has been reinstalled, or the signals have been readjusted, etc.), reset parameter (SP245) to 0, and then repeat the procedure from step (1).

\subsection*{4.5 Alarms}

The alarms related to setup are shown below.
AL16: Magnetic pole position detection error.......... This occurs if START is turned ON before Z-phase automatic adjustment is carried out.
\(\rightarrow\) Carry out the PLG Z-phase automatic adjustment explained in "4.3".
AL42: Feedback error .......................................... This occurs when there is an excessive offset in the PLG A and B phases.
\(\rightarrow\) Mechanically adjust the PLG A and B phases.
AL42: Feedback error ............................................ This occurs when the correct Z-phase pulses were not detected.
\(\rightarrow\) Check that the Z-phase pulse and number of teeth are correct.

\subsection*{4.6 Handling the motor}

\subsection*{4.6.1 Storage}

Store the motor in the package box. This motor has a powerful permanent magnet in the rotor section. If the rotor is left standing outside of the package box, the built-in type parts could attract magnetic objects in the area, and could cause clock's to lose time, etc.

\subsection*{4.6.2 Assembly (built-in type)}
(1) The rotor section's powerful permanent magnet will attract magnetic objects. Thus, when inserting the shaft into the rotor or inserting the rotor in the machine, take care not to catch hands or fingers.
(2) Do not apply impacts on the stator or rotor. If impact is applied on the stator, the insulation will drop and could lead to burning, etc. If impact is applied on the rotor, the magnet could crack and the specified characteristics may not be realized.
(3) When inserting the shaft into the rotor, the maximum rotor heating temperature must be \(130^{\circ} \mathrm{C}\).
\(\rightarrow\) If the rotor is heated too high, the magnet will be demagnetized, and the specified characteristics may not be realized.
5. IPM Spindle Motor Specifications ..... V-22
5.1 IPM spindle motor specifications ..... V-22
5.2 Motor outline drawings ..... V-23

\section*{5. IPM Spindle Motor Specifications}

\subsection*{5.1 IPM spindle motor specifications}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Spindle motor model} & SJ-PMF
\(01830-00\) & SJ-PMF
\(03530-00\) & \[
\begin{aligned}
& \text { SJ-PMF } \\
& 07030-00
\end{aligned}
\] & & \\
\hline \multirow[t]{2}{*}{Continuous characteristics} & \[
\begin{array}{ll}
\hline \begin{array}{l}
\text { Rated } \\
\text { output }
\end{array} & {[k W]}
\end{array}
\] & 3.7 & 7.5 & 18.5 & & \\
\hline & Rated
torque [Nm] & 11.8 & 23.9 & 58.9 & & \\
\hline \multirow[t]{2}{*}{Short-time rated characteristic s} & \[
\begin{array}{ll}
\hline \begin{array}{l}
\text { Rated } \\
\text { output }
\end{array} & {[\mathrm{kW}]}
\end{array}
\] & 5.5 & 11.0 & 22.0 & & \\
\hline & Rated
torque \(\quad[\mathrm{Nm}]\) & 17.5 & 35.0 & 70.0 & & \\
\hline \multicolumn{2}{|l|}{Rated rotation speed} & \multicolumn{3}{|c|}{3000} & & \\
\hline Maximum speed & rotation [r/min ] & \multicolumn{3}{|c|}{8000} & & \\
\hline \multicolumn{2}{|l|}{Frame number} & 7.1 & 90 & 112 & & \\
\hline \(\mathrm{GD}^{2}\) & [ \(\mathrm{kgm}^{2}\) ] & 0.013 & 0.027 & 0.063 & & \\
\hline Weight & [kg] & 23 & 40 & 60 & & \\
\hline \multicolumn{2}{|l|}{Cooling method} & \multicolumn{3}{|c|}{Forced wind cooling} & & \\
\hline \multicolumn{2}{|l|}{Ambient temperature} & \multicolumn{5}{|c|}{Operation: 0 to 40/Storage: -15 to 70} \\
\hline \multicolumn{2}{|l|}{Accessories} & \multicolumn{5}{|c|}{Pulse generator, thermal protector} \\
\hline \multicolumn{2}{|l|}{Vibration} & \multicolumn{5}{|c|}{\(19.6 \mathrm{~m} / \mathrm{s}^{2}(2 \mathrm{G})\) or less} \\
\hline \multicolumn{2}{|l|}{Standard combination drive unit type} & MDS-C1-SPM-110 & MDS-C1-SPM-185 & MDS-C1-SPM-300 & & \\
\hline
\end{tabular}

Note 1) The rated output is guaranteed in the rated input voltage to the power supply unit (AC200 to 230 V ).
Note 2) The short-time rating is \(50 \%\) ED (ON for five minutes/OFF for five minutes in 10-minute cycle time).

\subsection*{5.2 Motor outline drawings}

SJ-PMF01830-00 with standard flange


SJ-PMF03530-00 with standard flange


\section*{SJ-PMF07030-00 with standard flange}


Note 1) A space of at least 30 mm should be provided between the cooling fan and nearby located wall.
Note 2) It can be installed vertically with the shaft down.
Note 3) When removing the suspension bolts for use, cover the screw holes with bolts, etc.
Appendix 1 EN Standards Step-down Insulation Transformer ..... AI-2

\section*{Appendix 1 EN Standards Step-down Insulation Transformer}

The following transformer is available as an EN Standards step-down insulation transformer.
Contact the manufacturer directly to purchase.
- Manufacturer : Nunome Electric

\section*{Insulation transformer}

Type : NETxxxxTUV

Approval No. : B94 1021343002
- Standard specifications
- Rating
- Capacity
- Rated frequency
- Primary voltage
: Continuous
: Refer to following table
: 50/60Hz
: 380400415
440460480 V
- Secondary voltage : 200V
- Insulation Class

(1)
- Connection : 人— 入
- Max. ambient temperature: \(50^{\circ} \mathrm{C}\)



Product outline dimensions
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type & Capacity & \begin{tabular}{l}
Secondary current \\
(A)
\end{tabular} & L & LP & W & WP & W1 & H & H1 & \(\varnothing\) & kg & Terminal connection wire range ( \(\mathrm{mm}^{2}\) ) \\
\hline \[
\begin{aligned}
& \hline \text { NET } \\
& \text { 3460TUV }
\end{aligned}
\] & 3460VA & 10A & 250 & 120 & 210 & 154 & 174 & 310 & 240 & \(10 \times 12\) & 36 & 0.33 to 6 \\
\hline \[
\begin{aligned}
& \text { NET } \\
& \text { 5200TUV }
\end{aligned}
\] & 5200VA & 15A & 320 & 180 & 240 & 153 & 185 & 355 & 285 & 10 & 50 & 0.33 to 6 \\
\hline \[
\begin{aligned}
& \text { NET } \\
& \text { 6930TUV }
\end{aligned}
\] & 6930VA & 20A & 360 & 250 & 240 & 160 & 190 & 410 & 340 & 13 & 64 & \[
\begin{aligned}
& \hline \text { P0. } 5 \text { to } 10 \\
& \text { S1. } 5 \text { to } 16
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline \text { NET } \\
& 010.4 \mathrm{TUV}
\end{aligned}
\] & 10.4kVA & 30A & 360 & 250 & 280 & 200 & 230 & 410 & 340 & 13 & 93 & 1.5 to 16 \\
\hline \[
\begin{aligned}
& \text { NET } \\
& 013.9 \mathrm{TUV}
\end{aligned}
\] & 13.9kVA & 40A & 500 & 330 & 300 & 205 & 245 & 455 & 370 & \(13 \times 15\) & 120 & 2.5 to 16 \\
\hline \[
\begin{aligned}
& \text { NET } \\
& 017.3 T U V
\end{aligned}
\] & 17.3kVA & 50A & 500 & 330 & 330 & 225 & 265 & 455 & 370 & \(13 \times 15\) & 143 & 2.5 to 16 \\
\hline \[
\begin{aligned}
& \text { NET } \\
& \text { 026TUV }
\end{aligned}
\] & 26kVA & 75A & 530 & 305 & 400 & 222 & 280 & 535 & 450 & 13 & 206 & \[
\begin{aligned}
& \text { P2. } 5 \text { to } 16 \\
& \text { S6 to } 50
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { NET } \\
& 034.6 \mathrm{TUV}
\end{aligned}
\] & 34.6kVA & 100A & 550 & 270 & 440 & 305 & 355 & 575 & 490 & 13 & 273 & \[
\begin{aligned}
& \text { P2. } 5 \text { to } 16 \\
& \text { S6 to } 50
\end{aligned}
\] \\
\hline
\end{tabular}
Appendix 2 EMC Installation Guidelines ..... AII-2
1. Introduction ..... AII-2
2. EMC Instructions ..... AII-2
3. EMC Measures ..... AII-3
4. Measures for panel structure. ..... AII-3
4.1 Measures for control box unit. ..... AII-3
4.2 Measures for door ..... AII-4
4.3 Measures for operation board panel ..... AII-4
4.4 Shielding of the power supply input section ..... AII-4
5. Measures for various cables ..... AII-5
5.1 Measures for wiring in box ..... AII-5
5.2 Measures for shield treatment ..... AII-5
5.3 Servomotor power cable ..... AII-6
5.4 Servomotor feedback cable ..... AII-6
5.5 Spindle motor power cable ..... AII-7
5.6 Spindle motor feedback cable ..... AII-7
5.7 Cable between control box and operation board panel. ..... AII-7
6. EMC Countermeasure Parts ..... AII-8
6.1 Shield clamp fitting ..... AII-8
6.2 Ferrite core ..... AII-9

\section*{Appendix 2 EMC Installation Guidelines}

\section*{1. Introduction}

EMC Instructions became mandatory as of January 1, 1996. The subject products must have a CE mark attached indicating that the product complies with the Instructions. As the NC unit is a component designed to control machine tools, it is believed that it is not a direct EMC Instruction subject. However, we would like to introduce the following measure plans to backup EMC Instruction compliance of the machine tool as the NC unit is a major component of the machine tools.
(1) Methods for installation in control/operation panel
(2) Methods of wiring cable outside of panel
(3) Introduction of countermeasure parts

Mitsubishi is carrying out tests to confirm the compliance to the EMC Standards under the environment described in this manual. However, the level of the noise will differ according to the equipment type and layout, control panel structure and wiring lead-in, etc. Thus, we ask that the final noise level be confirmed by the machine manufacturer.
These contents are the same as the EMC INSTALLATION GUIDELINES (BNP-B8582-45). For measures for CNC, refer to "EMC INSTALLATION GUIDELINES" (BNP -B2230).

\section*{2. EMC Instructions}

The EMC Instructions largely regulate the following two withstand levels.
(1) Emission....... Capacity to prevent output of obstructive noise that adversely affects external sources.
(2) Immunity....... Capacity not to malfunction due to obstructive noise from external sources.

The details of each level are classified as Table 1. It is assumed that the Standards and test details required for a machine are the same as these.

Table 1
\begin{tabular}{|c|c|c|c|c|}
\hline Class & Name & Details & \begin{tabular}{l}
Generic \\
Standard
\end{tabular} & Standards for determining test and measurement \\
\hline \multirow[t]{2}{*}{Emission} & Radiated noise & Electromagnetic noise radiated through the air & \multirow[t]{2}{*}{EN50081-2 EN61800-3 (Industrial environment)} & \multirow[b]{2}{*}{EN55011} \\
\hline & Conductive noise & Electromagnetic noise discharged from power supply line & & \\
\hline \multirow{7}{*}{Immunity} & Static electricity electrical discharge & Example) Withstand level of static electricity discharge from a charged human body & \multirow{7}{*}{EN61000-6-2 :1999 EN61800-3 (Industrial environment)} & IEC61000-4-2 \\
\hline & Radiated magnetic field & Example) Simulation of immunity from digital wireless transmitters & & IEC61000-4-3 \\
\hline & Burst immunity & Example) Withstand level of noise from relays or connecting/ disconnecting live wires & & IEC61000-4-4 \\
\hline & Conductive immunity & Example) Withstand level of noise entering through power line, etc. & & IEC61000-4-6 \\
\hline & Power supply frequency field & Example) \(50 / 60 \mathrm{~Hz}\) power frequency noise & & IEC61000-4-8 \\
\hline & Power dip (fluctuation) & Example) Power voltage drop withstand level & & IEC61000-4-11 \\
\hline & Surge & Example) Withstand level of noise caused by lightning & & IEC61000-4-5 \\
\hline
\end{tabular}

\section*{3. EMC Measures}

The main items relating to EMC measures include the following.
(1) Store the device in an electrically sealed metal panel.
(2) Earth all conductors that are floating electrically. (Lower the impedance.)
(3) Wire the power line away from the signal wire.
(4) Use shielded wires for the cables wired outside of the panel.
(5) Install a noise filter.

Take caution to the following items to suppress noise radiated outside of the panel.
(1) Securely install the devices.
(2) Use shielded wires.
(3) Increase the panel's electrical seal. Reduce the gap and hole size.

Note that the electromagnetic noise radiated in the air is greatly affected by the clearance of the panel and the quality of the cable shield.

\section*{4. Measures for panel structure}

The design of the panel is a very important factor for the EMC measures, so take the following measures into consideration.


\subsection*{4.1 Measures for control box unit}
(1) Use metal for all materials configuring the panel.
(2) For the joining of the top plate and side plates, etc., mask the contact surface with paint, and fix with welding or screws. In either case, keeping the joining clearance to a max. of 20 cm for a better effect.
(3) Note that if the plate warps due to the screw fixing, etc., creating a clearance, noise could leak from that place.
(4) Plate the metal plate surface (with nickel, tin) at the earthing section, such as the earthing plate.
(5) The max. tolerable hole diameter of the openings on the panel surface, such as the ventilation holes, must be 3 cm to 5 cm . If the opening exceeds this tolerance, use a measure to cover it. Note that even when the clearance is less than 3 cm to 5 cm , noise may still leak if the clearance is long.


\subsection*{4.2 Measures for door}
(1) Use metal for all materials configuring the door.
(2) Use an EMI gasket or conductive packing for the contact between the door and control box unit.
(3) The EMI gasket or conductive packing must contact at a uniform and correct position of the metal surface of the control box unit.
(4) The surface of the control box unit contacted with the EMI gasket or conductive packing must have conductance treatment.
Example) Weld (or screw) a welded plate that is plated (with nickel, tin).

(5) As a method other than the above, the control box unit and door can be connected with a plain braided wire. In this case, the box and door should be contacted at as many points as possible.

\subsection*{4.3 Measures for operation board panel}
(1) Always connect the operation board and indicator with an earthing wire.
(2) If the operation board panel has a door, use an EMI gasket or conductive packing between the door and panel to provide electrical conductance in the same manner as the control box.
(3) Connect the operation board panel and control box with a sufficiently thick and short earthing wire.
Refer to the "EMC INSTALLATION GUIDELINES" BNP-B2230 for the NC for more details.

\subsection*{4.4 Shielding of the power supply input section}
(1) Separate the input power supply section from other parts of the control box so that the input power supply line will not be contaminated by radiated noise.
(2) Do not lead the power line through the panel without passing it through a filter.


The power supply line noise is eliminated by the filter, but cable contains noise again because of the noise radiated in the control box.

Control box


Use a metal plate, etc., for the shielding partition. Make sure not to create a clearance.

\section*{5. Measures for various cables}

The various cables act as antennas for the noise and discharge the noise externally. Thus appropriate treatment is required to avoid the noise. The wiring between the drive unit and motor act as an extremely powerful noise source, so apply the following measures.

\subsection*{5.1 Measures for wiring in box}
(1) If the cables are led unnecessarily in the box, they will easily pick up the radiated noise. Thus, keep the wiring length as short as possible.

(2) The noise from other devices will enter the cable and be discharged externally, so avoid internal wiring near the openings.

(3) Connect the control device earthing terminal and earthing plate with a thick wire. Take care to the leading of the wire.

\subsection*{5.2 Measures for shield treatment}

Use of shield clamp fittings is recommended for treating the shields. The fittings are available as options, so order as required. (Refer to section "6.1 Shield clamp fitting".)
Clamp the shield at a position within 10 cm from the panel lead out port.

\subsection*{5.3 Servomotor power cable}

(1) Use four wires (3-phase + earthing) for the power line that are completely shielded and free from breaks.
(2) Earth the shield on both the control box side and motor chassis side.
(3) Earth the shield with a metal P clip or U clip.
(4) Directly earth the shield. Do not solder the braided shield onto a wire and earth the end of the wire.

(5) When not using a shield cable for the power line, use a conventional cabtyre cable. Use a metal conduit outside the cable.
(6) Earth the power line on the control box side at the contact surface of the conduit connector and control box. (Mask the side wall of the control box with paint.)
(7) Follow the treatment shown in the example for the conduit connector to earth the power line on the motor side. (Example: Use a clamp fitting, etc.)


\subsection*{5.4 Servomotor feedback cable}


Use a conventional batch pair shield cable for the servomotor's feedback cable, and earth to the NC side (inside the control box).

\subsection*{5.5 Spindle motor power cable}

(1) Use four wires (3-phase + earthing) for the power line, that are completely shielded and free from breaks.
(2) Earth the shield with the same manner as the servomotor power line.
(3) When not using a shield cable for the power line, use a conventional cabtyre cable. Use a metal conduit outside the cable.
(4) Earth the power line on the control box side at the contact surface of the conduit connector and control box side wall in the same manner as the servomotor power line. (Mask the side wall of the control box with paint.)
(5) Earth at the conduit connector section in the same manner as the servomotor power line.

\subsection*{5.6 Spindle motor feedback cable}



Spindle drive side connector (View of state with cover removed)
(1) Use the conventional batch pair shield cable for the spindle motor's feedback cable.

Note) The shield of the spindle motor feedback cable is not FG, so do not earth it.

\subsection*{5.7 Cable between control box and operation board panel}

SH11 cable (signal line)


PD05 cable (power supply line)

(1) Use a shield cable for the cable between the control box and operation board.
(2) Earth the shield in the same manner as the other cables.
(3) Insert a ferrite core in the SH 11 cable at a position within 10 cm from the device.
(This provides a better effect.)

The PD05 cable is used with the MELDAS500
Series.
Refer to the EMC INSTALLATION GUIDELINES for each NC for details.

\section*{6. EMC Countermeasure Parts}

\subsection*{6.1 Shield clamp fitting}

The effect can be enhanced by connecting the cable directly to the earthing plate. Install an earthing plate near each panel's outlet (within 10 cm ), and press the cable against the earthing plate with the clamp fitting.
If the cables are thin, several can be bundled and clamped together.
Securely earth the earthing plate with the frame ground. Install directly on the cabinet or connect with an earthing wire.
Contact Mitsubishi if the earthing plate and clamp fitting set (AERSBAN-[ ]SET) is required.


\section*{- Outline drawing}


Note 1) Screw hole for wiring to earthing plate in cabinet.
Note 2) The earthing plate thickness is 1.6 mm .
\begin{tabular}{|c|c|c|c|l|}
\hline & A & B & C & \multicolumn{1}{c|}{ Enclosed fittings } \\
\hline AERSBAN-DSET & 100 & 86 & 30 & Two clamp fittings A \\
\hline AERSBAN-ESET & 70 & 56 & - & One clamp fitting B \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline & L \\
\hline Clamp fitting A & 70 \\
\hline Clamp fitting B & 45 \\
\hline
\end{tabular}

\subsection*{6.2 Ferrite core}

A ferrite core is integrated and mounted on the plastic case.
Quick installation is possible without cutting the interface cable or power supply line.
This ferrite core is effective against common mode noise, allowing measures against noise to be taken without affecting the signal quality.

\section*{Recommended ferrite core}

TDK ZCAT Series

\section*{Shape and dimensions}

ZCAT type


Fig. 1
ZCAT-B type


Fig. 3

ZCAT-A type


Fig. 2
ZCAT-C type


Fig. 4
- Recommended ferrite core

Unit [mm]
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Part name } & Fig. & A & B & C & \(\mathbf{D}\) & \(\mathbf{E}\) & \begin{tabular}{c} 
Applicable cable \\
outline
\end{tabular} & Weight \\
\hline ZCAT3035-1330 (-BK)*1 & 1 & 39 & 34 & 13 & 30 & --- & 13 max. & 63 \\
\hline ZCAT2035-0930-M (-BK) & 2 & 35 & 29 & 13 & 23.5 & 22 & 10 to 13 & 29 \\
\hline ZCAT2017-0930B-M (-BK) & 3 & 21 & 17 & 9 & 20 & 28.5 & 9 max. & 12 \\
\hline ZCAT2749-0430-M (-BK) & 4 & 49 & 27 & 4.5 & 19.5 & --- & 4.5 max. & 26 \\
\hline
\end{tabular}
*1 A fixing band is enclosed when shipped.
ZCAT-B type: Cabinet fixed type, installation hole \(\varnothing 4.8\) to 4.9 mm , plate thickness 0.5 to 2 mm ZCAT-C type: Structured so that it cannot be opened easily by hand once closed.

\section*{HF3000A-TM/HF3000C-TM Series}
- 3-phase, 3-wire type (250V system, 500 V system)
- Noise Standards [German Official Report Vfg243, European Standards EN55011 (Class B)] compatible part.
- Effective as an IGBT inverter and MOS-FET inverter.
- Installation is easy with terminal block structure, and reliability is outstanding.

\section*{<Application>}
- Products that must satisfy Noise Standards [German Official Report Vfg243, European Standards EN55011 (Class B)].

- For input of electricity converter using the latest advanced high-speed power device such as IGBT MOS-FET.

\section*{<Performance>}
<250V system>
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Part name & \[
\begin{gathered}
\hline \text { HF3005A } \\
-T M
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { HF3010A } \\
-T M
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { HF3015A } \\
-T M
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{HF} 3020 \mathrm{~A} \\
-\mathrm{TM}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{HF} 3030 \mathrm{~A} \\
-\mathrm{TM}
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{HF} 3040 \mathrm{~A} \\
-\mathrm{TM}
\end{gathered}
\] & \[
\begin{gathered}
\hline \mathrm{HF} 3050 \mathrm{~A} \\
-\mathrm{TM}
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { HF3060A } \\
-T M
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { HF3080A } \\
-T M
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { HF3100A } \\
-T M
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{HF} 3150 \mathrm{~A} \\
-\mathrm{TM}
\end{gathered}
\] \\
\hline Rated voltage & \multicolumn{11}{|c|}{250VAC} \\
\hline Rated current & 5A & 10A & 15A & 20A & 30A & 40A & 50A & 60A & 80A & 100A & 150A \\
\hline Leakage current & \multicolumn{11}{|c|}{1.5mA MAX 250 VAC 60 Hz} \\
\hline
\end{tabular}
<500V system>
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Part name & \[
\begin{gathered}
\text { HF3005C } \\
-\mathrm{TM}
\end{gathered}
\] & \[
\begin{gathered}
\text { HF3010C } \\
-T M
\end{gathered}
\] & \[
\begin{gathered}
\text { HF3015C } \\
-\mathrm{TM}
\end{gathered}
\] & \[
\begin{gathered}
\text { HF3020C } \\
-T M
\end{gathered}
\] & \[
\begin{gathered}
\text { HF3030C } \\
-\mathrm{TM}
\end{gathered}
\] & \[
\begin{gathered}
\text { HF3040C } \\
\text {-TM }
\end{gathered}
\] & \[
\begin{gathered}
\text { HF3050C } \\
-T M
\end{gathered}
\] & \[
\begin{gathered}
\text { HF3060C } \\
-T M
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { HF3080C } \\
-\mathrm{TM}
\end{gathered}
\] & \[
\begin{gathered}
\text { HF3100C } \\
-T M
\end{gathered}
\] \\
\hline Rated voltage & \multicolumn{10}{|c|}{500VAC} \\
\hline Rated current & 5A & 10A & 15A & 20A & 30A & 40A & 50A & 60A & 80A & 100A \\
\hline Leakage current & \multicolumn{10}{|c|}{\(3 \mathrm{~mA} \mathrm{MAX} \mathrm{500VAC} \mathrm{60Hz}\)} \\
\hline
\end{tabular}
<Noise terminal voltage measurement example>


German Official Report Vfg243 measurement data

Measured with IGBT inverter


European Standards EN55011 Class B
measurement data

\section*{<Main characteristics>}

<Circuit diagram>

<Outline dimensions>
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Part name} & \multicolumn{3}{|r|}{Dimensions (unit: mm)} & \multirow[b]{2}{*}{Part name} & \multicolumn{3}{|r|}{Dimensions (unit: mm)} \\
\hline & A & B & C & & A & B & C \\
\hline HF3005A-TM & \multirow{4}{*}{175} & \multirow{4}{*}{170} & \multirow{4}{*}{130} & HF3005C-TM & \multirow{4}{*}{170} & \multirow{4}{*}{170} & \multirow{4}{*}{150} \\
\hline HF3010A-TM & & & & HF3010C-TM & & & \\
\hline HF3015A-TM & & & & HF3015C-TM & & & \\
\hline HF3020A-TM & & & & HF3020C-TM & & & \\
\hline HF3030A-TM & \multirow[b]{2}{*}{260} & \multirow[b]{2}{*}{155} & \multirow[b]{2}{*}{140} & HF3030C-TM & \multirow[b]{2}{*}{260} & \multirow[b]{2}{*}{155} & \multirow[b]{2}{*}{160} \\
\hline HF3040A-TM & & & & HF3040C-TM & & & \\
\hline HF3050A-TM & \multirow[b]{2}{*}{290} & \multirow[b]{2}{*}{190} & \multirow[b]{2}{*}{230} & HF3050C-TM & \multirow[b]{2}{*}{290} & \multirow[b]{2}{*}{190} & \multirow[b]{2}{*}{250} \\
\hline HF3060A-TM & & & & HF3060C-TM & & & \\
\hline HF3080A-TM & \multirow[b]{2}{*}{405} & \multirow[b]{2}{*}{220} & \multirow[b]{2}{*}{240} & HF3080C-TM & \multirow[b]{2}{*}{405} & \multirow[b]{2}{*}{220} & \multirow[b]{2}{*}{260} \\
\hline HF3100A-TM & & & & HF3100C-TM & & & \\
\hline
\end{tabular}


\section*{CC3000C-AZ Series Terminal block type}
- 3-phase, 3-wire type (500V system)
- Dedicated reactor type for inverter secondary side (load side).
- Noise radiated on the inverter output side is dampened.
- Series is available up to 150A.

\section*{<Application>}
- For secondary side (load side) of general-purpose and large capacity inverter powers.

<Performance> (500V system)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Part name & \[
\left\lvert\, \begin{array}{cc}
\hline \text { CC3005C } \\
-A Z
\end{array}\right.
\] & \[
\begin{array}{|c|}
\hline C C 3010 C \\
-A Z \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{CC} 3015 \mathrm{C} \\
-A Z
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline C C 3020 C \\
-A Z
\end{array}
\] & \[
\begin{gathered}
C C 3030 C \\
-A Z
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline C C 3040 C \\
-A Z \\
\hline
\end{array}
\] & \[
\begin{array}{|c|}
\hline C C 3050 C \\
-A Z \\
\hline
\end{array}
\] & \[
\begin{gathered}
C C 3060 C \\
-A Z \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
C C 3080 C \\
-A Z
\end{gathered}
\] & \[
\begin{array}{|c|}
\hline \mathrm{CC} 3100 \mathrm{C} \\
\hline-A Z \\
\hline
\end{array}
\] & \[
\mathrm{CaZ}_{\mathrm{AZ}}^{\mathrm{C} 3115 \mathrm{C}}
\] & \[
\left|\begin{array}{c}
C C 3150 C \\
-A Z
\end{array}\right|
\] \\
\hline Rated voltage & \multicolumn{12}{|c|}{500VAC} \\
\hline Rated current & 5A & 10A & 15A & 20A & 30A & 40A & 50A & 60A & 80A & 100A & 115A & 150A \\
\hline
\end{tabular}
<Main characteristics>

<Circuit diagram>


\section*{<Outline dimensions>}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Part name} & \multicolumn{12}{|c|}{Dimensions (Unit: mm)} \\
\hline & A & B & C & D & E & F & G & H & J & L & N & P \\
\hline CC3005C-AZ & \multirow{3}{*}{154.5} & \multirow{3}{*}{140} & \multirow{3}{*}{125} & \multirow{3}{*}{110} & \multirow{3}{*}{95} & \multirow{3}{*}{70} & \multirow{5}{*}{32} & \multirow{3}{*}{50} & \multirow{3}{*}{20} & \multirow{5}{*}{M4} & \multirow{5}{*}{ø4.5} & \multirow{5}{*}{\[
\begin{gathered}
\text { R2.25 } \\
\text { length } \\
6
\end{gathered}
\]} \\
\hline CC3010C-AZ & & & & & & & & & & & & \\
\hline CC3015C-AZ & & & & & & & & & & & & \\
\hline CC3020C-AZ & \multirow[t]{2}{*}{174.5} & \multirow[t]{2}{*}{160} & \multirow[t]{2}{*}{145} & \multirow[t]{2}{*}{130} & \multirow[t]{2}{*}{110} & \multirow[t]{2}{*}{80} & & \multirow[t]{2}{*}{70} & \multirow[t]{2}{*}{25} & & & \\
\hline CC3030C-AZ & & & & & & & & & & & & \\
\hline
\end{tabular}
(2)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Part name} & \multicolumn{11}{|c|}{Dimensions (Unit :mm)} \\
\hline & A & B & C & D & E & F & G & H & J & L & N \\
\hline CC3035C-AZ & 170 & 120 & 80 & 150 & 135 & 120 & 44 & 120 & 90 & M5 & \(\varnothing 5.5\) \\
\hline CC3045C-AZ & 230 & 180 & 100 & 220 & 200 & 180 & 44 & 170 & 140 & M6 & ø6.5 \\
\hline CC3080C-AZ & \multirow{3}{*}{260} & \multirow{3}{*}{210} & \multirow{3}{*}{150} & \multirow{3}{*}{250} & \multirow{3}{*}{230} & \multirow{3}{*}{210} & \multirow{3}{*}{57} & \multirow{3}{*}{170} & \multirow{3}{*}{140} & \multirow{3}{*}{M8} & \multirow{3}{*}{\(ø 6.5\)} \\
\hline CC3100C-AZ & & & & & & & & & & & \\
\hline CC3115C-AZ & & & & & & & & & & & \\
\hline CC3150C-AZ & 277 & 220 & 160 & 260 & 240 & 220 & 57 & 170 & 140 & M8 & ø6.5 \\
\hline
\end{tabular}

5A to 30A



35A to 150A


\section*{MX13-SERIES 3-phase high-attenuation noise filter (for FA and servo systems)}

\section*{- Features}
- Optimum for installation in control panel: New shape with uniform height and depth
- Easy installation and maintenance:

Terminals are grouped on the front panel
- NC servo and AC servo noise compatible:

High-attenuation of 40 dB at 150 kHz
- Safety Standards:

UL1283, CSA22.2 No.8, EN133200
- Patent and registration of design pending

Specifications and standards

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Type \\
Item
\end{tabular}} & MX13030 & MX13050 & MX13100 & MX13150 \\
\hline 1 & Rated voltage (AC) & \multicolumn{4}{|c|}{3-phase 250VAC (50/60Hz)} \\
\hline 2 & Rated current (AC) (Note) & 30A & 50A & 100A & 150A \\
\hline 3 & Test voltage (AC for one minute between terminal and case) & \multicolumn{4}{|c|}{\(2500 \mathrm{VAC}(100 \mathrm{~mA})\) at \(25^{\circ} \mathrm{C}, 70 \% \mathrm{RH}\)} \\
\hline 4 & Insulation resistance (500VDC between terminal and case) & \multicolumn{4}{|c|}{100 MO min. at \(25^{\circ} \mathrm{C}, 70 \% \mathrm{RH}\)} \\
\hline 5 & Leakage current (250V, 60Hz) & \multicolumn{2}{|c|}{3.5 mA max.} & \multicolumn{2}{|c|}{8 mA max.} \\
\hline 6 & DC resistance & 30 mO max. & 11 mO max. & 5.5 mO max. & 3.5 mO max. \\
\hline 7 & Temperature rise & \multicolumn{4}{|c|}{\(30^{\circ} \mathrm{C}\) max} \\
\hline 8 & Working ambient temperature & \multicolumn{4}{|c|}{\(-25^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)} \\
\hline 9 & Working ambient humidity & \multicolumn{4}{|c|}{\(30 \%\) to \(95 \%\) RH (With no dew condensation)} \\
\hline 10 & Storage ambient temperature & \multicolumn{4}{|c|}{\(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)} \\
\hline 11 & Storage ambient humidity & \multicolumn{4}{|c|}{10\% to 95\% RH (With no dew condensation)} \\
\hline 12 & Weight (typ) & 2.8 kg & 3.9 kg & 11.5 kg & 16 kg \\
\hline
\end{tabular}
(Note) This is the value at \(\mathrm{Ta} \leq 50^{\circ} \mathrm{C}\).
Refer to the following output derating when \(\mathrm{Ta}>50^{\circ} \mathrm{C}\).

\section*{- Output derating}


\section*{■ Examples of using MX13 Series}

This noise filter has the same dimensions as the general servo unit's depth ( 200 mm ) and height ( 380 mm ).
The system layout can be simplified by arranging this unit with the servo unit.
As with the servo unit, the terminals are arranged on the front panel, so ideal wiring leading can be realized.
Refer to the following usage example for details.


Example of attenuation of noise terminal voltage
- EMI data for single control panel (with six-axis servo unit)


EMI data for control panel + noise filter (MX13030)


Outline drawing

\begin{tabular}{|c|c|c|}
\hline Model & MX13030 & MX13050 \\
\hline A & 66 & 81 \\
\hline B & 45 & 55 \\
\hline C & 10.5 & 13 \\
\hline D & 50 & 67 \\
\hline E & 13 & 16 \\
\hline F & 10 & 13 \\
\hline G & 177 & 179 \\
\hline H & \begin{tabular}{c} 
M4 cross- \\
head screw
\end{tabular} & \begin{tabular}{c} 
M6 cross- \\
head screw
\end{tabular} \\
\hline I & 70 & 85 \\
\hline J & \begin{tabular}{c} 
M4 cross- \\
head screw
\end{tabular} & \begin{tabular}{c} 
M6 cross- \\
head screw
\end{tabular} \\
\hline K & 195 & 200 \\
\hline
\end{tabular}

\begin{tabular}{l|l} 
K & 195
\end{tabular}


Contact:
DENSEI-LAMBDA K.K.

\section*{Product Identification}
ZCAT
\((1) \quad \frac{20}{(2)} \quad \frac{35}{(3)}\)
\(\frac{09}{(4)} \quad \frac{30}{(5)}\)
\(\underset{(6)}{A}-\frac{B K}{(7)}\)
(1) Series name
(2) Outside diameter in mm
(3) Length in mm
(4) Inside diameter in mm
(5) Material
(6) A : Self-hold (cable-rock mechanism) type B : Self-hold (chassis-hold mechanism) type None : Band-hold type
(7) Color BK : Black

None : Gray

\section*{Construction}

Appendix 3 Unit system

\section*{Appendix 3 Unit system}

The correspondence of the conventional unit symbols used in this manual and the international unit system (SI) is shown below.
\begin{tabular}{|c|c|c|c|}
\hline Name of amount & Conventional unit's symbol & SI unit and common unit symbols & Conversion value \\
\hline Weight/load (expresses weight) & kgf & - < & \multirow{2}{*}{The value is the same} \\
\hline Weight & - & kg & \\
\hline Wight/load (concept of force) & kgf & N & \(1 \mathrm{kgf}=9.80665 \mathrm{~N}\) \\
\hline Force & kgf & N & \(1 \mathrm{kgf}=9.80665 \mathrm{~N}\) \\
\hline Torque & \(\mathrm{kgf} \cdot \mathrm{cm}\) & \(N \cdot m\) & \(1 \mathrm{kgf} \cdot \mathrm{cm}=9.80665 \times 10^{-2} \mathrm{~N} \cdot \mathrm{~m}\) \\
\hline \begin{tabular}{l}
Inertia \\
(J)
\end{tabular} & \(\mathrm{kgf} \cdot \mathrm{cm} \cdot \mathrm{S}^{2}\) & \(\mathrm{kg} \cdot \mathrm{m}^{2}\) & \(1 \mathrm{kgf} \cdot \mathrm{cm} \cdot \mathrm{S}^{2}=9.80665 \times 10^{-2} \mathrm{~kg} \cdot \mathrm{~m}^{2}\) \\
\hline GD \({ }^{2}\) & \(\mathrm{kgf} \cdot \mathrm{cm}^{2}\) & - & \[
\mathrm{J}=\frac{\mathrm{GD}^{2}}{4 \mathrm{~g}}\left(\mathrm{~g}: \text { Gravitational acceleration } \begin{array}{r}
\left.980 \mathrm{~cm} / \mathrm{s}^{2}\right)
\end{array}\right.
\] \\
\hline Rotation speed, speed & rpm & \(\mathrm{r} / \mathrm{min}\) or \(\mathrm{min}^{-1}\) & \(1 \mathrm{rpm}=1 \mathrm{r} / \mathrm{min}=1 \mathrm{~min}^{-1}\) \\
\hline
\end{tabular}

\section*{Appendix 4 Classification of Servo/Spindle Drive Unit Circuits Based on Higher Harmonic Suppression Countermeasures Guidelines}

Calculate the circuit class (conversion coefficient) and power capacity based on the Higher Harmonic Suppression Countermeasures Guidelines using the following table.

Circuit class
\begin{tabular}{|c|c|c|c|c|}
\hline Name & Model & Circuit class & Circuit type & Conversion coefficient \\
\hline \multirow[t]{4}{*}{AC servo drive unit} & TRS Series & 3 & 3-phase bridge (with smoothing capacitor) Without reactor & \(\mathrm{K} 31=3.4\) \\
\hline & \begin{tabular}{l}
MR-S1/S2/S3 \\
MR-S11/S12 Series
\end{tabular} & 3 & 3-phase bridge (with smoothing capacitor) Without reactor & \(\mathrm{K} 31=3.4\) \\
\hline & \begin{tabular}{l}
MDS-A-SVJ \\
MDS-B-SJV2 \\
MR-J2-CT Series
\end{tabular} & 3 & 3-phase bridge (with smoothing capacitor) Without reactor & K31=3.4 \\
\hline & \begin{tabular}{l}
MDS-A-V1/V2 \\
MDS-B-V1/V14/V2/V24 \\
MDS-C1-V1/V2 Series
\end{tabular} & 3 & 3-phase bridge (with smoothing capacitor) With AC reactor & \(\mathrm{K} 32=1.8\) \\
\hline \multirow[t]{4}{*}{AC spindle drive unit} & SFJ/SGJ Series & 3 & 3-phase bridge (with smoothing capacitor) Without reactor & \(\mathrm{K} 31=3.4\) \\
\hline & MDS-A-SPJ MDS-B-SPJ2 Series & 3 & 3-phase bridge (with smoothing capacitor) Without reactor & \(\mathrm{K} 31=3.4\) \\
\hline & MDS-A-CSP-370/450 & 3 & 3-phase bridge (with smoothing capacitor) Without reactor & \(\mathrm{K} 31=3.4\) \\
\hline & \begin{tabular}{l}
MDS-A-SP/SPA \\
MDS-B-SP/SPA/SPH/SPM/SPX \\
MDS-C1-SP/SPH/SPM/SPX Series
\end{tabular} & 3 & 3-phase bridge (with smoothing capacitor) Without AC reactor & \(\mathrm{K} 32=1.8\) \\
\hline
\end{tabular}

\section*{Working conditions}
1. The power supply unit (MDS-A/B/C1-CV Series) applies when using the AC reactor (B-AL Series). When the MDS-A-CR Series is used, calculate with the conversion coefficient as K31=3.4 (without reactor).

\section*{Power facility capacity}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & Rated capacity [KVA] & Type & Rated capacity [KVA] & Type & Rated capacity [KVA] \\
\hline MDS-A/B/C1-SP-37 & 4.61 & MDS-A/B/C1-V1-03 & 0.6 & MDS-A/B/C1-V2-0503 & 1.6 \\
\hline MDS-A/B/C1-SP-55 & 6.77 & MDS-A/B/C1-V1-05 & 1.0 & MDS-A/B/C1-V2-0505 & 2.0 \\
\hline MDS-A/B/C1-SP-75 & 9.07 & MDS-A/B/C1-V1-10 & 1.6 & MDS-B/C1-V2-1003 & 2.2 \\
\hline MDS-A/B/C1-SP-110 & 13.1 & MDS-A/B/C1-V1-20 & 2.7 & MDS-A/B/C1-V2-1005 & 2.6 \\
\hline MDS-A/B/C1-SP-150 & 17.6 & MDS-A/B/C1-V1-35 & 4.7 & MDS-A/B/C1-V2-1010 & 3.2 \\
\hline MDS-A/B/C1-SP-185 & 21.8 & MDS-A/B/C1-V1-45 & 5.9 & MDS-A/B/C1-V2-2010 & 4.3 \\
\hline MDS-A/B/C1-SP-220 & 25.9 & MDS-A/B/C1-V1-70 & 9.0 & MDS-A/B/C1-V2-2020 & 5.4 \\
\hline MDS-A/B/C1-SP-260 & 30.0 & MDS-A/B/C1-V1-90 & 11.5 & MDS-A/B/C1-V2-3510 & 6.3 \\
\hline MDS-A/B/C1-SP-300 & 34.7 & & & MDS-A/B/C1-V2-3520 & 7.4 \\
\hline MDS-B-SP-370 & 42.8 & & & MDS-A/B/C1-V2-3535 & 9.4 \\
\hline MDS-B-SP-450 & 52.1 & & & MDS-A/B/C1-V2-4520 & 8.6 \\
\hline MDS-B-SP-550 & 63.7 & & & MDS-A/B/C1-V2-4535 & 10.6 \\
\hline & & & & MDS-C1-V2-4545 & 11.8 \\
\hline & & & & MDS-C1-V2-7070 & 18.0 \\
\hline
\end{tabular}
Appendix 5 Explanation of Large Capacity Spindle Unit Specifications ..... AV-2
1. Outline ..... AV-2
2. List of units ..... AV-2
3. Selection of \(A C\) reactor (B-AL), contactor and CB ..... AV-2
4. Outline of units ..... AV-3
5. Panel cut dimension drawing ..... AV-4
6. Detailed outline drawing ..... AV-5
7. Heating value ..... AV-8
8. Selection of power capacity ..... AV-8
9. Selecting of wire size ..... AV-8
10. Drive unit connection screw size ..... AV-9
11. Connection of Each Unit ..... AV-9
12. Restrictions. ..... AV-11
13. Parameters ..... AV-12
14. Precautions ..... AV-12

\section*{Appendix 5 Explanation of Large Capacity Spindle Unit Specifications}

\section*{1. Outline}

The MDS-B-SP Series large capacity spindle unit ( \(37 \mathrm{~kW}, 45 \mathrm{~kW}, 55 \mathrm{~kW}\) ) is an increased capacity version of the MDS-B-SP Series standard spindle unit (30kW or less).
Thus, the items other than those related to the increased capacity are the same as the 30 kW or less capacity.
The matters required for the increased capacity are explained in these specifications.
Refer to the "AC Servo/Spindle MDS-A Series/B Series Specifications Manual" (BNP-B3759) for details on the other specifications.

\section*{2. List of units}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Power supply unit DC power supply/regeneration control to drive unit} \\
\hline No. & Type & \[
\begin{aligned}
& \text { Capa- } \\
& \text { city } \\
& \text { (kW) }
\end{aligned}
\] & Weight (kg) & Outline drawing \\
\hline (1) & B-CVE-370 & 37 & 9.5 & "6.(1)" \\
\hline (2) & B-CVE-450 & 45 & 20 & "6.(2)" \\
\hline (3) & B-CVE-550 & 55 & 21 & "6.(3)" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Spindle drive unit Spindle motor control} \\
\hline No. & Type & \[
\begin{gathered}
\text { Capa- } \\
\text { city } \\
\text { (kW) }
\end{gathered}
\] & Weight (kg) & Outline drawing \\
\hline (1) & B-SP-370 & 37 & 20 & "6.(4)" \\
\hline (2) & B-SP-450 & 45 & 21 & "6.(5)" \\
\hline (3) & B-SP-550 & 55 & 21 & "6.(5)" \\
\hline
\end{tabular}

\section*{3. Selection of \(A C\) reactor ( \(B-A L\) ), contactor and \(C B\)}

Always install the following AC reactor and contactor on the input side of each power supply unit (B-CVE-370/450/550). Note that only the contactor can be omitted for the B-CVE-370.
(Note 1) When using the MDS-B-CVE-450 or 550, always install one contactor for one power supply unit. The power supply unit will be damaged if this contactor is omitted or shared.
(Note 2) Always install one ACL for one power supply unit. The power supply unit will be damaged if this \(A C L\) is omitted or shared.

Selection of the CB when using only one power supply unit is shown below as reference.
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Power supply unit type } & B-CVE-370 & B-CVE-450 & B-CVE-550 & \begin{tabular}{c} 
Outline \\
drawing
\end{tabular} \\
\hline \hline AC reactor (ordered part) & B-AL-37K & B-AL-45K & B-AL-55K & "6 (6)" \\
\hline \begin{tabular}{l} 
Recommended contactor \\
(non-ordered part)
\end{tabular} & SN150-AC200V & SN150-AC200V & SN180-AC200V & \\
\hline \begin{tabular}{l} 
Recommended CB \\
(non-ordered part)
\end{tabular} & \begin{tabular}{c} 
NF225CS3P- \\
175A05
\end{tabular} & \begin{tabular}{c} 
NF225CS3P- \\
200A05
\end{tabular} & \begin{tabular}{c} 
NF400CS3P- \\
\(300 A 05\)
\end{tabular} & \\
\hline
\end{tabular}
(Note) Even when OFF, a leakage current of 15 mA or less flows at the coil connection terminal MC1 for the power supply unit's external contactor. Thus, when using a contactor other than that recommended above, do not use a connector that turns ON at 15 mA or less or a contactor that cannot be turned OFF at 15 mA . When using a contactor with an internal electronic circuit, consult with the contactor maker and make sure that the contactor will operate correctly even if a leakage current of 15 mA or less flows.

\section*{4. Outline of units}


AV-3

\section*{5. Panel cut dimension drawing}


\section*{6. Detailed outline drawing}

Note) The l-bolt installation hole is provided only on the top of the MDS-B-CVE-550 and MDS-B-SP-450/550 models.
The Hbolt (size: M10) is not enclosed, and must be prepared by the user. Use an l-bolt that is between 13 mm and 25 mm long.
(1) MDS-B-CVE-370

(2) MDS-B-CVE-450

(3) MDS-B-CVE-550

(4) MDS-B-SP-370

(5) MDS-B-SP-450/550

(6) ACL


\section*{7. Heating value}
(1) Power supply unit
\begin{tabular}{|c|c|}
\hline Model & Heating value (W) \\
\hline \hline B-CVE-370 & 400 \\
\hline B-CVE-450 & 500 \\
\hline B-CVE-550 & 600 \\
\hline
\end{tabular}
(2) Spindle drive unit
\begin{tabular}{|c|c|}
\hline Model & Heating value (W) \\
\hline \hline B-SP-370 & 850 \\
\hline B-SP-450 & 1000 \\
\hline B-SP-550 & 1200 \\
\hline
\end{tabular}

Note 1) The heating value is the value at the continuous rated output.
Note 2) Use the following expressions as a guide for the heating value outside the unit when installing in an enclosed structure.
\begin{tabular}{|c|l|}
\hline Unit & \multicolumn{1}{c|}{ Heating value outside unit } \\
\hline \hline B-CVE-370 & Heating value outside unit \(=(B-C V E\) heating value -15\() \times 0.75\) \\
\hline B-CVE-450,550 & Heating value outside unit \(=(\) B-CVE heating value -30\() \times 0.75\) \\
\hline B-SP-370,450,550 & Heating value outside unit \(=(B-S P\) heating value -40\() \times 0.75\) \\
\hline
\end{tabular}

\section*{8. Selection of power capacity}

The power capacity required for the power supply unit is shown below.
\begin{tabular}{|c|c|}
\hline Power supply unit model & Power capacity (kVA) \\
\hline \hline B-CVE-370 & 54 \\
\hline B-CVE-450 & 63 \\
\hline B-CVE-550 & 77 \\
\hline
\end{tabular}

\section*{9. Selecting of wire size}
(1) Recommended power lead-in wire size

Select the wire size based on the power supply unit capacity as shown below regardless of the motor type.
\begin{tabular}{|c|c|}
\hline Power supply unit model & \begin{tabular}{c} 
Recommended power-lead-in \\
wire size
\end{tabular} \\
\hline \hline B-CVE-370 & HIV50mm \\
\hline B-CVE-450 & HIV60mm \\
\hline B-CVE-550 & HIV80mm \\
\hline
\end{tabular}
(2) Recommended wire size for spindle motor output wire

Select the wire size based on the spindle drive unit capacity as shown below regardless of the motor type.
\begin{tabular}{|c|c|}
\hline Spindle drive unit model & \begin{tabular}{c} 
Recommended wire size for \\
spindle motor output wire
\end{tabular} \\
\hline \hline B-SP-370 & HIV50mm \\
\hline B-SP-450 & HIV60mm \\
\hline B-SP-550 & HIV80mm \\
\hline
\end{tabular}
(3) L+, L- link bar wire size
\begin{tabular}{|c|c|}
\hline Power supply unit model & L+, L- link bar wire size \\
\hline \hline B-CVE-370 & HIV50mm \({ }^{2}\) \\
\hline B-CVE-450 & Dedicated link bars are enclosed as accessories (always use accessories) \\
\hline B-CVE-550 & Dedicated link bars are enclosed as accessories (always use accessories) \\
\hline
\end{tabular}
(4) L11, L21, MC1

Regardless of the spindle drive unit and power supply unit capacities, use an IV2mm \({ }^{2}\) or more wire size.
\[
A V-8
\]

\section*{10. Drive unit connection screw size}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Power supply unit} & \multicolumn{2}{|r|}{Spindle drive unit} \\
\hline \multirow[t]{2}{*}{Type} & \multirow[t]{2}{*}{B-CVE-370} & B-CVE-450 & B-CVE-550 & \multirow[t]{2}{*}{B-SP-370} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { B-SP-450 } \\
& \text { B-SP-550 }
\end{aligned}
\]} \\
\hline & & Left side \({ }^{\text {Right side }}\) & Left side \({ }^{\text {Right side }}\) & & \\
\hline L1, L2, L3 & M8 & M8 & M10 & - & - \\
\hline U, V, W & - & - & - & M8 & M10 \\
\hline L+, L- & M6 & M10 M6 & M10 M6 & M10 & M10 \\
\hline L11, L21 & M4 & M4 & M4 & M4 & M4 \\
\hline MC1 & M4 & M4 & M4 & - & - \\
\hline
\end{tabular}

\section*{11. Connection of Each Unit}
(1) Wiring system

The wiring system is the same as the standard MDS-A/B-SP Series (30kW or less). (Refer to the wiring system example below.)
Note that there are restrictions to the installation and selection, so refer to the Restrictions given in "12".
(a) When using MDS-B-CVE-370 or less


AV-9
(b) When using MDS-B-CVE-450 or 550

(Note 1) Connect the L11, L21 and MC1 external connections without removing the conductors connected between L21 and L22, L22 and MC2, and L11 and L12 of the B-CVE-450/550. (L12, L22 and MC2 are for special specifications, and normally, the external connection is not required.)
(Note 2) Always connect the contactor to MC1 so that it can be controlled with the drive unit's internal signal. The power supply unit could be damaged if the contactor is turned ON and OFF with a separate user-prepared sequence.

\section*{12. Restrictions}

\section*{(1) Installation}

Always install the B-SP-370/450/550 to the left of the B-CVE-260 to 550.
When using B-CVE-450/550, always use the enclosed link bar to connect \(L+\) and \(L\) on the B-SP-370/450/550.
(a) Layout when connecting only one spindle drive unit to power supply unit Install the B-CVE-260 to 370/450/550 to the right, and the B-SP-370/450/550 to the left. Always cut the panel according to the panel cut dimension drawings shown in " 5 ".
<Refer to Example 1.>
(b) Layout when connecting multiple drive units to a large capacity power supply unit The following number of servo/spindle drive units can be additionally connected.
- When B-CVE-450 and B-SP-370 are combined, 9 kW ( \(=45 \mathrm{~kW}-37 \mathrm{~kW}+1 \mathrm{~kW}\) ) worth of units.
- When B-CVE-550 and B-SP-450 are combined, 11 kW ( \(=55 \mathrm{~kW}-45 \mathrm{~kW}+1 \mathrm{~kW}\) ) worth of units.
- When B-CVE-450 and B-SP-370 are combined, \(19 \mathrm{~kW}(=55 \mathrm{~kW}-37 \mathrm{~kW}+1 \mathrm{~kW})\) worth of units.

In this case, install the B-SP-370/450 to the left of B-CVE-450/550 as shown in the panel cut dimension drawings in "5". Install the additional drive units to the right of the BCVE-450/ 550.

If the spindle motor output differs from the spindle drive unit output, the above, excluding the layout, may not always apply. (This is because the power supply unit output is determined by the motor output.)
<Refer to Example 2.>
(2) Selection
(a) When using the B-CVE-450/550, one of the B-SP-370/450/550 units must be selected for the drive units connected to this power supply unit.
Only one B-SP-370/450/550 can be connected to one B-CVE-450/550.
(b) When using B-SP-370/450/550, the following power supply unit must be selected.
- When using B-SP-370: Select B-CVE-260 or more
- When using B-SP-450: Select B-CVE-300 or more
- When using B-SP-550: Select B-CVE-370 or more

Note that if the total of the servo/spindle motor output corresponds to the above power supply unit with the normal selection method, that capacity power supply unit can be selected.

Example 3) When using B-SP-370
When total of servo/spindle motor output is 23 kW or less: Select B-CVE-260
When total of servo/spindle motor output is 23.1 kW or more:
Select power supply unit selected with normal selection method.
Example 4) When using B-SP-450
When total of servo/spindle motor output is 27 kW or less: Select B-CVE-300
When total of servo/spindle motor output is 27.1 kW or more:
Select power supply unit selected with normal selection method.
Example 5) When using B-SP-550
When total of servo/spindle motor output is 31 kW or less: Select B-CVE-370 When total of servo/spindle motor output is 31.1 kW or more:

Select power supply unit selected with normal selection method.

Appendix 5 Explanation of Large Capacity Spindle Unit Specifications
<Example 1>

<Example 2>


\section*{13. Parameters}

The parameters added and changed from the 30 kW or less drive unit are shown below. The parameters other than those shown below are the same as the 30 kW or less capacity. Refer to the "AC Servo/Spindle MDS-A Series/B Series Specifications Manual" (BNP-B3759) for details.
\begin{tabular}{|c|c|c|c|c|}
\hline No. & Abbrev. & & Details & \[
\frac{\text { TYP }}{\text { HEX }}
\] \\
\hline \multirow[t]{5}{*}{SP039} & \multirow[t]{5}{*}{ATYP} & \multicolumn{2}{|l|}{Select the capacity of the drive unit to be used.} & \multirow[t]{5}{*}{HEX setting} \\
\hline & & Setting value & Drive unit type & \\
\hline & & 000D & MDS-B-SP-370 & \\
\hline & & 000E & MDS-B-SP-450 & \\
\hline & & 0010 & MDS-B-SP-550 & \\
\hline \multirow[t]{8}{*}{SP041} & \multirow[t]{8}{*}{PTYP} & \multicolumn{2}{|l|}{Select the capacity of the power supply unit to be used.} & \multirow[t]{8}{*}{HEX setting} \\
\hline & & Setting value & Power supply unit type & \\
\hline & & 0126 & MDS-B-CVE-260 & \\
\hline & & 0130 & MDS-B-CVE-300 & \\
\hline & & 0137 & MDS-B-CVE-370 & \\
\hline & & 0145 & MDS-B-CVE-450 & \\
\hline & & 0155 & MDS-B-CVE-550 & \\
\hline & & Note 1) Whe the a Exam & \begin{tabular}{l}
ing the external emergency stop function, add 40 to e setting value. \\
When using external emergency stop function with B-CVE-450 \(0145+0040=0185\)
\end{tabular} & \\
\hline
\end{tabular}

\section*{14. Precautions}
(1) After turning the power OFF, wait at least 15 seconds before turning it ON again. If the power is turned ON within 15 seconds, the drive unit's control power may not start up correctly.

Revision history
\begin{tabular}{|c|l|l|}
\hline \begin{tabular}{c} 
Sub- \\
No.
\end{tabular} & Date of revision & \multicolumn{1}{c|}{ Revision details } \\
\hline A & December 2000 & First edition created. \\
\hline & April 2001 & \begin{tabular}{l} 
Revised errors. \\
Changed outside dimension of AC reactor. \\
Revised outside dimension of HA053N.
\end{tabular} \\
\hline C & March 2002 & \begin{tabular}{l} 
- Contents of "MDS-B/C1-SPM Series Specifications and Instruction Manual \\
(Provisional Version) BNP-B3979E" combined with "MDS-C1 Series \\
Specifications Manual BNP-C3000". \\
- Corrections made to match level with "MDS-C1 Series Specifications \\
Manual BNP-C3000". \\
- Design of the cover and the back cover were changed. \\
-\begin{tabular}{l} 
Place of contact on back cover corrected. \\
- MODEL, MODEL CODE, and Manual No. were added on the back cover.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Notice}

Every effort has been made to keep up with software and hardware revisions in the contents described in this manual. However, please understand that in some unavoidable cases simultaneous revision is not possible.
Please contact your Mitsubishi Electric dealer with any questions or comments regarding the use of this product.

\section*{Duplication Prohibited}

This instruction manual may not be reproduced in any form, in part or in whole, without written permission from Mitsubishi Electric Corporation.
© 2002 MITSUBISHI ELECTRIC CORPORATION
ALL RIGHTS RESERVED
\begin{tabular}{|c|c|}
\hline MODEL & MDS-C1 Series \\
\hline \begin{tabular}{c} 
MODEL \\
CODE
\end{tabular} & \(008-142\) \\
\hline Manual No. & BNP-C3000C(ENG) \\
\hline
\end{tabular}```


[^0]:    \. CAUTION
    When the breaker is shared for multiple power supply units, if a short-circuit fault occurs in the unit with the smallest capacity, the breaker may not function. This is dangerous, so do not share the breaker.

